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SPECTRAL ANALYSIS OF DISCRETE ELLIPTIC OPERATORS
AND APPLICATIONS IN CONTROL THEORY.

DAMIEN ALLONSIUS∗, FRANCK BOYER† , AND MORGAN MORANCEY∗

Abstract. In this paper we propose an analysis of discrete spectral properties for a finite differ-
ence discretization of quite general 1D second-order self-adjoint elliptic operators. We particularly
investigate some (uniform in the discretization parameter) qualitative behavior of eigenfunctions and
eigenvalues.

With those estimates we manage to obtain new results for the construction of bounded families of
controls for semi-discrete parabolic PDEs, in particular for boundary controls of a coupled parabolic
system with fewer controls than equations.

Key words. Discrete spectral analysis, Sturm-Liouville operator, control theory, moments
method, systems of parabolic equations.
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1. Introduction.

1.1. General context. We consider the differential operator

(1) A := −∂x(γ(x)∂x·) + q(x) ·

defined on the unit interval Ω = (0, 1). The functions γ and q are given and satisfy,
for some s ≥ 0,

(Hs) q ∈ Cs(Ω) and γ ∈ Cs+1(Ω), with γmin := inf
Ω
γ > 0.

We shall sometimes need to see A as a self-adjoint unbounded operator in L2(Ω)
whose domain is D(A) = H1

0 (Ω) ∩ H2(Ω). In this setting, it is well-known that
there exists an orthonormal basis of L2(Ω) made of eigenfunctions of A that we
denote by (φk)k≥1, the associated (real) eigenvalues being denoted by (λk)k≥1. Those
eigenvalues are simple and we assume that they are sorted in increasing order.

For any subset O ⊂ Ω and any u ∈ L2(Ω), we define the semi-norm

‖u‖L2(O) :=

(∫
O

|u(x)|2 dx
) 1

2

,

and for any smooth function u : Ω→ R, we set

∂ru := u′(1), and ∂lu := −u′(0),

which are the normal derivatives of u at both ends of the interval Ω.
In this section, we recall some qualitative properties of the eigenelements (φk, λk)k

that we are interested in. Of course, there exist much more accurate descriptions of
the asymptotic behavior of the eigenelements of such operators (see [18]) but we only
deal here with the same level of accuracy as the one that we shall achieve in the
discrete framework.
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Throughout this paper C denotes a positive number that may vary from line to
line. If necessary, we add information about dependency on parameters p1, p2, . . . pk
in the following way : C := C(p1, p2, . . . , pk).

Theorem 1.1. Assume that (H0) holds. There exists C1(q, γ) > 0, such that
1. For any k ≥ 1,

λk+1 − λk ≥ C1k.

2. For any k ≥ 1
|∂rφk| ≥ C1k, and |∂lφk| ≥ C1k.

3. For any non-empty open subset ω ⊂ Ω, there exists C2(q, γ, ω) > 0 such that
for any k ≥ 1,

‖φk‖2L2(ω) ≥ C2.

Remark 1.1. Considering γ = 1 and q = 0 one can easily check that the bounds
given in Theorem 1.1 are sharp. Indeed, in this case, we know that λk = k2π2,
φk(x) =

√
2 sin(

√
λkx). Thus,

λk+1 − λk = (2k + 1)π2 and |∂bφk| =
√

2λk =
√

2πk, ∀k ≥ 1, ∀b ∈ {l, r},

and for ω = (a, b) ⊂ (0, 1), we have

‖φk‖2L2(ω) =

∫ b

a

2 sin2(kπx)dx −−−−→
k→∞

b− a = |ω|.

Remark 1.2. By using the min-max principle and the exact knowledge of the
eigenvalues of the Laplace operator as recalled in the previous remark, we can show
that the eigenvalues of A satisfy

(2) γminπ
2k2 − ‖q‖L∞ ≤ λk ≤ ‖γ‖L∞π2k2 + ‖q‖L∞ , ∀k ≥ 1.

The first point in Theorem 1.1 implies in particular the so-called gap property for
the eigenvalues, which means that there exists some ρ > 0 such that λk+1 − λk ≥ ρ
for any k.

It appears that all those properties allow, by using the so-called moments method
(see [12]), to prove some null-controllability results for the parabolic problem asso-
ciated with A (either for a distributed control or for a boundary control) as well
as for some coupled parabolic systems associated with A with fewer controls than
components. This will be detailled in section 5.1.

The main goal of this paper is to study whether or not the three results given in
Theorem 1.1 still hold for a discrete version Ah of the differential operator uniformly
with respect to the discretization parameter h > 0. As a consequence, we shall obtain
new uniform controllability results for the associated semi-discrete parabolic equation
and systems via the moments method adapted to the discrete setting.

1.2. Notations and discrete framework. For any two real numbers α, β we
define

Jα, βK :=
[

min(α, β),max(α, β)
]
∩ N,

to be the set of all the integers between α and β.
Let us recall here the standard notation for the finite difference discretization of

the differential operator A. We consider an ordered set of N+2 distinct points of [0, 1]
denoted by (xi)

N+1
i=0 and satisfying x0 = 0 and xN+1 = 1. Let (xi+1/2)Ni=0 be the dual
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mesh points defined by xi+1/2 := xi+1+xi
2 . We set hi+1/2 := xi+1 − xi for i ∈ J0, NK

and hi := xi+1/2 − xi−1/2 =
hi+1/2+hi−1/2

2 , for i ∈ J1, NK. As usual, the mesh size
is defined by h := maxi∈J0,NK hi+1/2. We use the standard abuse of notation that
consists in using the index h to denote any mesh-dependent quantity even though it
obviously not only depends on h but also on the whole geometry of the mesh points.
For such a given mesh we introduce

Θh :=
h

mini∈J0,NK hi+1/2
,

which is a measure of the (non-)uniformity of the mesh. A family of meshes such that
(Θh)h is bounded, is called quasi-uniform.

For any open subset O ⊂ Ω, we define the discrete L2(O) semi-norm on RN by

‖U‖L2(Oh) :=

 ∑
i∈J1,NK
xi∈O

hi|ui|2


1
2

, ∀U = (ui)
N
i=1 ∈ RN ,

and for a time-dependent function t ∈ (0, T ) 7→ U(t) ∈ RN we set

‖U‖L2(OTh ) :=

(∫ T

0

‖U(t)‖2L2(Oh) dt

) 1
2

.

It is easily seen that ‖ · ‖L2(Ωh) is actually an Euclidian norm on RN , whose inner
product is denoted by 〈·, ·〉L2(Ωh).

We set qi := q(xi), γi+1/2 := γ(xi+1/2) and we define the square matrix Ah of
size N by

(3) (AhU)j := − 1

hj

(
γj+1/2

uj+1 − uj
hj+1/2

− γj−1/2
uj − uj−1

hj−1/2

)
+ qjuj ,∀j ∈ J1, NK

for any discrete function U = (ui)
N
i=1 ∈ RN , and any j ∈ J1, NK, with the usual con-

vention that u0 = uN+1 = 0 to take into account homogeneous boundary conditions.
By analogy with the continuous setting we define the normal derivative of a discrete
function U ∈ RN , taking into account the Dirichlet boundary condition, as follows

∂rU :=
0− uN
hN+1/2

, and ∂lU := −u1 − 0

h1/2
.

It is well-known that the discrete operator Ah is a second order accurate approx-
imation of the differential operator A (see [4]). Moreover, Ah is self-adjoint in the
space (RN , 〈·, ·〉L2(Ωh)) so that there exists a (finite) orthonormal family (φhk)Nk=1 ⊂ RN
made of eigenvectors of Ah (also referred to as discrete eigenfunctions in this paper),
and associated with eigenvalues denoted by Λh := (λhk)Nk=1. In other words, we have
the relations

Ahφhk = λhkφ
h
k , and 〈φhk , φhj 〉L2(Ωh) = δkj , ∀k, j ∈ J1, NK.

All those eigenvalues are simple and we assume that they are sorted in increasing
order.
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1.3. Presentation of the results. The results of this paper are split into two
parts. We first study spectral properties of the discrete operator Ah similar to the
ones given in Theorem 1.1 of Section 3 in the continuous setting. To prepare this
analysis we shall give the corresponding proofs at the continuous level in Section 2.
In Section 4, we propose some numerical simulations that illustrate our theoretical
results. In a second part of the paper (Section 5), we give our main applications in
discrete controllability theory for system of parabolic equations.

To begin with, it has to be noticed that for the discrete Laplace operator on a
uniform mesh, all the computations are explicit.

Remark 1.3 (discrete Laplace operator on uniform meshes). Let h∗ = 1/(N+1)
and denote by Ah∗ the discrete operator obtained on the uniform mesh of size h∗ with
γ = 1 and q = 0 (which is nothing but the very usual discrete Laplace operator).
Then, the eigenelements of Ah∗ are explicitely given by

λ
h∗
k =

4

h2
∗

sin2

(
kπh∗

2

)
, (φ

h∗
k )i =

√
2 sin(kπih∗), ∀i, k ∈ J1, NK.

In particular, we have

4k2 ≤ λh∗k ≤ π
2k2, ∀k ∈ J1, NK,

and

λ
h∗
k ≤

4

h2
∗

cos2
(π

2
h∗

)
≤ 4

h2
∗
− 4, ∀k ∈ J1, NK.

Here we used the standard inequality cos2(t) ≤ 1− 4
π2 t

2 for any 0 ≤ t ≤ 1.

By using the formulas recalled in the remark above, one can easily obtain the following
result.

Proposition 1.1. Let h∗ and Ah∗ as defined in Remark 1.3. The following prop-
erties hold:

• Gap property:

12 ≤ min
k∈J1,N−1K

(λ
h∗
k+1 − λ

h∗
k ) ≤ 3π2,

moreover the minimum is achieved for k = 1 and k = N − 1.
• Discrete normal derivative estimate: for b ∈ {l, r}

2
√

2k ≤ |∂bφ
h∗
k | ≤

√
2kπ, ∀k ∈ J1, N/2K,

2
√

2(N + 1− k) ≤ |∂bφ
h∗
k | ≤

√
2(N + 1− k)π, ∀k ∈ JN/2, NK.

• L2-norm estimate: for any non empty open subset ω ⊂ Ω, there exists h0(ω) >
0 and a C(q, γ, ω) such that, for any h∗ < h0, we have

‖φh∗k ‖
2
L2(ωh) ≥ C, ∀k ∈ J1, NK.

Some comments are in order. There are fundamental differences between Theorem
1.1 and Proposition 1.1. We first observe that the uniform gap property holds but
not the stronger property 1 of Theorem 1.1 since the distance between the two largest
discrete eigenvalues of Ah∗ does not tend to infinity. Similarly, the discrete normal

derivative of the eigenfunction φ
h∗
N for instance does not tend to infinity as N → ∞

(and simultaneously h∗ → 0 of course). It thus already appears that the qualitative
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Figure 1: Differences between discrete and continuous eigenelements.

behavior of the eigenelements of Ah∗ for the upper part of the spectrum may be quite
different from the one of the continuous operator, as we can see on Figure 1. However,
for the lower part of the spectrum the properties are quite similar to the ones of A.

Remark 1.4. Our aim is to generalize the three estimates of Proposition 1.1 to
non uniform meshes and non constant coefficients operators for which we do not
possess analytic formulas for the discrete eigenfunctions and eigenvalues. From the
discussion above, it already appears that this problem cannot be tackled by classical
numerical analysis arguments. Indeed, although it can be established that in the con-
tinous setting λk+1 − λk ≥ Ck (see Theorem 1.1, first estimate), we cannot deduce
directly from this estimate that a gap property holds in the discrete setting since Figure
1 reveals that the error of approximation |λN − λhN | can be as large as CN2, see also
Proposition 3.1. However, for the low frequencies (k ∈ {1, . . . , CNα} with a suitable
choice of α < 1 and C (see Theorem 3.1)), one can get that |λk − λhk | ≤ εk, with ε
sufficiently small so that estimate 1 of Theorem 1.1 allows us to deduce a uniform
gap estimate in the discrete setting for this particular portion of the spectrum. We
will apply this argument in the most general setting we consider. Nevertheless, with
stronger assumptions, we develop a strategy to obtain better estimates.

We will consider three slightly different sets of hypothesis for the regularity of the
meshes and the coefficients of our operator, namely

(S1) quasi-uniform meshes, q and γ satisfying (H2),

(S2) uniform meshes, q and γ satisfying (H0),

(S3) uniform meshes, q and γ satisfying (H0), and γ is constant.

In the remark below we show that the results we shall obtain in Section 3 about
operator Ah on uniform meshes in the setting (S2) still hold, in fact, for a wide class
of regular but non uniform meshes. Yet, to simplify the presentation of the next
sections, we shall always deal with uniform meshes in the setting (S2).
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Remark 1.5 (Families of regular meshes). In this remark, we use the notation
Ahγ,q for the discrete operator defined on any given mesh and for any couple of co-

efficients q and γ. We will also denote by Ah∗γ,q the discrete operator defined on the
uniform mesh with the same number of cells and a mesh size h∗ = 1

N+1 .

We define the vector αh = (αi)1≤i≤N by

αi :=

√
hi
h∗
,

and we set

γ̄i+1/2 :=
h2
∗

hi+1/2

√
hihi+1

γi+1/2, ∀i ∈ J0, NK,

and

q̄i := qi −
1

αi
Ah∗γ̄,0αh, ∀i ∈ J1, NK.

With those notations, one can check by direct algebraic manipulations that, if
uh ∈ RN and λ ∈ R satisfy Ahγ,quh = λuh, then we have

Ah∗γ̄,q̄(αhuh) = λ(αhuh).

In other words, the operators Ahγ,q and Ah∗γ̄,q̄ have exactly the same eigenvalues and
the corresponding eigenfunctions are deduced one from each other by a term by term
multiplication by the coefficients αi.

It follows that, any (uniform with respect to h) spectral property proved on the

modified operator Ah∗γ̄,q̄ on a uniform mesh, lead to the equivalent property for the

original operator Ahγ,q on a non-uniform grid. The price to pay in this manipulation
lies in the fact that the new coefficients γ̄ and q̄ actually depend on the geometry of
the initial mesh. In particular, one needs to control their “regularity” for uniform
estimates to hold. More precisely, we need to make sure that they are, in some sense,
bounded in C1 and C0 respectively (as required in the assumption (H0)). Of course, this
has to be carefully defined since those discrete coefficients are not, a priori, obtained
by sampling some functions on the primal and dual meshes.

As an important example, it can be shown by using standard Taylor formulas that
any mesh obtained as the image of a uniform mesh by a diffeomorphism ϑ : [0, 1] →
[0, 1] of class C3 as follows

xi = ϑ(ih∗), ∀i ∈ J1, NK,

fulfills all the required regularity properties for our results to hold.
Those particular meshes families were already considered for instance in [7] but

also in the recent work [11].
Observe however that the same manipulation does not hold in the setting (S3)

since it transforms a constant-diffusion problem into a variable and mesh-dependent
diffusion problem.

1.3.1. Discrete spectral properties. Let us first gather here the various re-
sults we will prove on qualitative properties of the eigenelements of Ah. Without loss
of generality we will assume that q ≥ 0 so that all the eigenvalues λhk and λk are
positive. Otherwise, one need to replace λhk by λhk + ‖q‖∞ in all the results below.
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Properties of discrete eigenfunctions. Let ω be a fixed non empty open subdomain
of Ω.

• In the case (S1), we obtain (Theorem 3.1) bounds from below of the following
kind

‖φhk‖2L2(ωh) ≥ C1e
−C2

√
λhk , ∀k ∈ J1, NK,

for any non empty open subdomain ω ⊂ Ω and h small enough, and

|∂bφhk | ≥ C1

√
λhke
−C2

√
λhk , ∀k ∈ J1, NK, ∀b ∈ {l, r},

where C1 and C2 do not depend on the mesh size h.
• In the case (S2), we can refine those estimates on a constant lower fraction of

the spectrum by proving (Theorem 3.2) that there exists a constant 0 < α ≤ 1
(depending only on γ and ω) such that

‖φhk‖2L2(ωh) ≥ C1, ∀k ∈ J1, αNK

|∂bφhk | ≥ C1

√
λhk , ∀k ∈ J1, αNK, ∀b ∈ {l, r}.

Moreover, we can give a sharp estimate of the best constant α for which those
properties hold, as attested by numerical experiments in Section 4.

• Finally, in the case (S3), we can recover optimal (in a sense to be made precise
later) estimates on the whole spectrum (Theorem 3.3)

‖φhk‖2L2(ωh) ≥ C1

(
1− h2(λhk − ‖q‖L∞)

4γ

)
, ∀k ∈ J1, NK,

|∂bφhk | ≥ C1

√
λhk

√
1−

h2(λhk − ‖q‖L∞)

4γ
, ∀k ∈ J1, NK, ∀b ∈ {l, r}.

Observe that in the settings (S2) and (S3), for a fixed value of k and h→ 0,
since it is well-known that λhk → λk, we recover the same asymptotic lower
bounds as for the continuous operator A.
From those estimates, we will deduce in particular that for some C2 > 0,

‖φhk‖2L2(ωh) ≥
C2

λhk
, ∀k ∈ J1, NK,

|∂bφhk | ≥ C2, ∀k ∈ J1, NK, ∀b ∈ {l, r}.

Gap property for the eigenvalues. We study here the so-called uniform gap prop-
erty, that is : is there a constant C > 0, independent of h > 0, such that

(4) λhk+1 − λhk ≥ C, ∀k ∈ J1, N − 1K ?

In Proposition 1.1 we have shown that this property holds for the discrete Laplacian
on a uniform mesh.

In the general cases where q and γ only satisfy (H0), numerical experiments
(Section 4) reveal that the uniform gap property may fail, at least on the upper part
of the spectrum. More precisely, it can happen that two distinct eigenvalues are
exponentially close when γ is not a constant function.
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Thus, a reasonnable question would be : is there a gap property only for a lower
fraction of the spectrum, or more precisely is there a F (N) > 0 such that for some
C > 0 we have for any h > 0,

(5) λhk+1 − λhk ≥ C, ∀k ∈ J1, F (N)K ?

In the case (S2), we prove existence of a sharp (according to numerical simulations)
parameter α ∈ (0, 1] such that F (N) = αN satisfies the above requirements. In the
case (S3), we prove a weaker property, namely that for any β > 0 and any mesh
satisfying Θh ≤ β, there exists α := α(γ, q, β) > 0 such that F (N) = αN2/5.

1.3.2. Applications to the numerical approximation of control prob-
lems. As a main application of the previous estimates we propose new uniform con-
trollability results for 1D semi-discrete parabolic equations and systems either for a
distributed control or for a boundary control. They are proved by using the moments
method that heavily depends on the discrete spectral properties established in this
paper.

We first consider the semi-discretized controlled scalar parabolic equation with a
finite time horizon T > 0

(6)

{
(yh)′(t) +Ahyh(t) = DhωV hd (t) + Bhr V hb (t), for 0 < t ≤ T
yh(0) = y0,h ∈ RN .

Here, we consider two possible types of control
• V hd : (0, T ) → RN is a distributed control function that acts on the sys-

tem through the control operator Dhω, which is the diagonal N × N matrix
depending on the control domain ω and defined by

(7) (Dhω)i,i :=

{
1 if xi ∈ ω,
0 if xi 6∈ ω.

• V hb : (0, T ) → R is a boundary control function that acts on the system on
the right boundary of the interval Ω (that is at x = 1) through the control
operator Bhr , which is the column vector defined by

Bhr =


0
...
0

γN+1/2

hNhN+1/2

 .

The particular form of this vector comes from the fact that, the matrixAh was
designed in (3) for homogeneous Dirichlet boundary condition and thus, we
need to add a source term in the last component of the equation to account for
a non-homogeneous Dirichlet boundary datum (which is precisely the control
V hb we are looking for).
Of course, the same analysis can be done for a boundary control acting on
the left boundary of Ω, that is at x = 0 but we will not give the details here.

System (6) is a discrete version of the following parabolic PDE control problem
∂ty +Ay = 1ωVd(t, x), for 0 < t ≤ T
y(t, 0) = 0, y(t, 1) = Vb(t), for 0 < t ≤ T,
y(0, .) = y0 ∈ L2(Ω).
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The typical questions we are interested in may be roughly formulated as follows
(for a given set of data γ, q, ω, T , ...)

• Distributed control : Is there a constant C > 0 such that for any h > 0 small
enough and any y0,h ∈ RN we can find a control V hd ∈ L2(0, T,RN ) such that
the solution of (6) (with V hb = 0) satisfies yh(T ) = 0 and moreover

‖V hd ‖L2(ΩTh ) ≤ C‖y0,h‖L2(Ωh).

• Boundary control : Is there a constant C > 0 such that for any, h > 0 small
enough, and any y0,h ∈ RN , we can find a control V hb ∈ L2(0, T ) such that
the solution of (6) (with V hd = 0) satisfies yh(T ) = 0 and moreover

‖V hb ‖L2(0,T ) ≤ C‖y0,h‖L2(Ωh).

When γ is constant, q = 0 and for a uniform mesh, the boundary control case was
positively solved in [16]. The authors use explicit formulas for λhk and φhk in that
case (see Remark 1.3) to tackle the problem of null controllability with the moments
method. In the present work we propose to use the same kind of strategy but replacing
the exact knowledge of the eigenelements of Ah by the estimates discussed above.

Moreover, in the general case, it turns out that the exact null-controllability at
the discrete level formulated above is too strong. Indeed, it may happen in some
situations that the discrete problems are not uniformly controllable (we mention here
the counter-example in 2D given in [20] for which (6) is not even approximately
controllable for a given h). Finally, from a practical point of view, to obtain a bounded
family of discrete controls that converges (at least weakly) to a null-control for the
initial PDE problem, it is enough to relax the requirement yh(T ) = 0,∀h > 0 by
the fact that ‖yh(T )‖L2(Ωh) → 0 at a prescribed rate when h → 0. This issue is for
instance discussed in details in [6] and is formalized by the following notion.

Definition 1.1. Let φ : (0,+∞)→ (0,+∞) be a function such that limh→0 φ(h) =
0. We say that the family of Problems (6) is uniformly φ(h)-null controlable with a
distributed control (resp. a boundary control) if there exists a C > 0, such that, for
any h small enough and any y0,h ∈ RN , we can find a control V hd ∈ L2(0, T,RN )
(resp. V hb ∈ L2(0, T )) that satisfies

‖V hd ‖L2(ΩTh ) ≤ C‖y0,h‖L2(Ωh),
(
resp. ‖V hb ‖L2(0,T ) ≤ C‖y0,h‖L2(Ωh)

)
,

and such that the solution yh of (6) with V hb = 0 (resp. V hd = 0) satisfies

‖yh(T )‖2L2(Ωh) ≤ Cφ(h)‖y0,h‖2L2(Ωh).

It is shown in [7, 8, 9] that, for a finite difference approximation on smooth grids
with smooth coefficients, the uniform φ(h)-null controllability property holds for a
distributed control as soon as φ does not tend to zero faster that some exponential
h 7→ e−C/h

α

(see also [14] where the case of Galerkin approximation is discussed).
However, in those references, the methods which are used (based on discrete Carle-
man estimates) do not allow to tackle the case of coupled parabolic systems with a
boundary control.

With the techniques developped in the present paper (however restricted to the
1D case), we are able to obtain similar results for the scalar equation (6) both for dis-
tributed and boundary control problems, as well as for the coupled systems presented
below, which is, up to our knowledge, the first result in that framework.
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A typical semi-discrete parabolic system with two components we shall deal with
is the following

(Sh2 )

 (Y h)′(t) +

(
Ah 0h

Ih Ah
)
Y h(t) =

(
Ih

0h

)
(DhωV hd (t) + Bhr V hb (t)), for 0 < t ≤ T,

Y h(0) = Y 0,h ∈ (RN )2.

In this system, Ih (resp. 0h) is the identity matrix (resp. the zero matrix) of size
N × N . The unknown Y h(t) ∈ (RN )2 has now two components. The first one
satisfies the same scalar equation as before and is controlled either by a distributed
control V hd or by a boundary control V hb , whereas the second component satisfies a
parabolic equation without explicit appearance of a control; actually this component
of the solution is indirectly controlled by the first component itself by means of the

coupling term which is here set to 1 and which appears in the matrix

(
Ah 0h

Ih Ah
)

.

The controllability questions we are interested in are now exactly the same: is it
possible to find a bounded family of controls (V hd )h (resp. (V hb )h) such that the two
components of the corresponding solution of (Sh2 ) are small at time T , that is

‖Y h(T )‖2L2(Ωh) ≤ Cφ(h)‖Y 0,h‖2L2(Ωh),

where the notation for the norms ‖ · ‖L2(Ωh) are adapted to the fact that Y h has now
two components. The corresponding precise theorems are stated in Section 5.3.

To conclude this introduction, we mention that we do not address here the ques-
tion of the actual computation of the controls. Even though we shall use the moments
method in the analysis, it has to be precised that this is not at all a constructive
method that can be efficiently implemented. Instead, once a theoretical uniform φ(h)-
null controllability result is obtained, we can implement the penalised HUM method
that provides, in a more natural and generic way, discrete controls that fulfills the
properties of definition 1.1. This approach is discussed for instance in [6, 13].

2. Spectral properties of elliptic operators. The continuous case. In
this section we present a proof of Theorem 1.1 even though this result is not new by
itself (see for instance [18]). Our goal is just to introduce a quite simple proof that
we will manage to adapt to the discrete setting in the following sections. In all this
section, we assume that hypothesis (H0) holds.

Lemma 2.1. Let ω be a non-empty open subset of Ω. There exists C1(q, γ) > 0
and C2(q, γ, ω) > 0 such that we have, for any k ≥ 1,

1

λk
|∂bφk|2 ≥ C1Rk, ∀b ∈ {l, r},

and
‖φk‖2L2(ω) ≥ C2Rk,

where we have defined

(8) Rk := inf
x,y∈Ω

|φk(x)|2 + γ(x)
λk
|φ′k(x)|2

|φk(y)|2 + γ(y)
λk
|φ′k(y)|2

.

This lemma says, in particular, that to obtain (possibly uniform in k) lower
bounds on |∂bφk|/

√
λk and ‖φk‖L2(ω), it is enough to obtain lower bounds on Rk. Its

proof is postponed at the end of the section.
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Our strategy is based on interpreting the equation satisfied by eigenfunctions as a
particular first order ordinary differential system in such a way that the principal part
(with respect to the large values of λk) of the evolution matrix is skew-symmetric. It
will let us obtain suitable estimates on the quantity Rk defined in the previous lemma.
In this direction, we begin with the following lemma whose proof is a straightforward
computation and is left to the reader.

Lemma 2.2. Let f : Ω → R be a continuous function and λ > 0. Suppose that
u : Ω→ R satisfies the second-order differential equation (without any assumption on
boundary conditions)

(9) Au(x) = λu(x) + f(x), ∀x ∈ Ω,

then the following equation holds

(10) U ′(x) = M(x)U(x) +Q(x)U(x) + F (x),

where we have defined the vectors

U(x) :=

(
u(x)√
γ(x)
λ u′(x)

)
and F (x) :=

(
0

− f(x)√
γ(x)λ

)
.

and the matrices

M(x) :=

 0
√

λ
γ(x)

−
√

λ
γ(x) 0

 and Q(x) :=

 0 0
q(x)√
λγ(x)

√
γ(x)

(
1√
γ

)′
(x)

 .

The key-point of this formulation is that the large terms in
√
λ only appear in the

skew-symmetric matrix M(x), while the matrix Q(x) only contains bounded terms
with respect to λ.

As a consequence of this particular structure, we can obtain the following esti-
mates.

Lemma 2.3. With the same notations as in Lemma 2.2, and assuming that λ ≥ 1,
there exists C := C(γ, q), independent of λ, such that for any x, y ∈ Ω, we have

(11) ‖U(y)‖ ≤ C
(
‖U(x)‖+

∣∣∣∣∫ y

x

‖F (s)‖ds
∣∣∣∣) .

Proof. Let x, y ∈ Ω. It is fundamental to notice that the matrices (M(s))s pair-
wise commute, so that the resolvant operator associated with x 7→M(x) simply reads

S(y, x) := exp

(∫ y

x

M(s)ds

)
.

We can then use Duhamel’s formula to deduce from the equation (10) the following
expression

(12) U(y) = S(y, x)U(x) +

∫ y

x

S(y, s) (Q(s)U(s) + F (s)) ds.

We use now the fact that the matrix M(s) is skew-symmetric for any s, and so
is
∫ y
x
M(s)ds. It follows that the resolvant S(y, s) satisfies ‖S(y, s)‖ = 1 for any y, s.

We get

‖U(y)‖ ≤ ‖U(x)‖+

∣∣∣∣∫ y

x

‖F (s)‖ds
∣∣∣∣+

∣∣∣∣∫ y

x

‖Q(s)‖‖U(s)‖ds
∣∣∣∣ .
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Gronwall’s lemma finally yields

‖U(y)‖ ≤
(
‖U(x)‖+

∣∣∣∣∫ y

x

‖F (s)‖ds
∣∣∣∣) exp

(∣∣∣∣∫ y

x

‖Q(s)‖ds
∣∣∣∣) ,

which gives the result since Q(s) is bounded uniformly in s and λ, by using assumption
(H0).

We can now prove Theorem 1.1. Note that it is enough to prove the claims for k
large enough and in particular, by (2), we can assume without loss of generality that
λk ≥ 1.

• We begin with the proof of points 2. and 3. of the theorem, that is the prop-
erties which concern the eigenfunctions (φk). By definition, φk is a solution
of the equation

Aφk = λkφk,

which is exactly (9) with u = φk, λ = λk, f = 0. From Lemma 2.3 we deduce
that there exists C := C(γ, q), independent of k, such that for any x, y ∈ Ω,

|φk(y)|2 +
γ(y)

λk
|φ′k(y)|2 ≥ C

(
|φk(x)|2 +

γ(x)

λk
|φ′k(x)|2

)
,(13)

which exactly proves that the quantityRk defined in (8) is uniformly bounded
from below. The claim thus immediately follows from Lemma 2.1.

• We shall now prove the first point in Theorem 1.1. For any index k ≥ 1 with
λk ≥ 1, we define

u(x) := φ′k(1)φk+1(x)− φ′k+1(1)φk(x),

in such a way that u(1) = u′(1) = 0 and

Au = λk+1u+ f,

with

f(x) := φ′k+1(1)φk(x) (λk+1 − λk) .

Using the notations introduced in Lemma 2.2, we observe that by construction
we have U(1) = 0 so that the estimate (11) specialized in x = 1 leads to

‖U(y)‖ ≤ C
∫ 1

y

‖F (s)‖ds ≤ C
∫ 1

0

‖F (s)‖ds, ∀y ∈ Ω.

Using the expression for F and f , we find that

‖U(y)‖ ≤ C
√
γmin

(
λk+1 − λk√

λk+1

|φ′k+1(1)|

)∫ 1

0

|φk(s)|ds, ∀y ∈ Ω.

Thanks to the normalisation condition ‖φk‖L2(Ω) = 1 and the expressions of
U and u, we obtain for any y ∈ Ω,

∣∣φ′k(1)φk+1(y)− φ′k+1(1)φk(y)
∣∣2 ≤ C

γmin

(
λk+1 − λk√

λk+1

|φ′k+1(1)|

)2

.
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We integrate this inequality with respect to y ∈ (0, 1) and we use the L2(Ω)
orthonormality of φk+1 and φk to finally get

|φ′k+1(1)|2 ≤
(
φ′k+1(1)

)2
+ (φ′k(1))

2 ≤ C

γmin

(
λk+1 − λk√

λk+1

|φ′k+1(1)|

)2

,

and since φ′k+1(1) 6= 0, we conclude that

λk+1 − λk ≥ C̄
√
λk+1,

for some C̄(γ, q) > 0 independent of k. The claim follows by the lower bound
in (2).

Remark 2.1. Integrating (13) with respect to y over Ω and using the min-max
principle, we can easily obtain optimal L∞ bounds on the eigenfunctions

‖φk‖L∞(Ω) ≤ C, ‖φ′k‖L∞(Ω) ≤ C
√
λk, ∀k ≥ 1.

Remark 2.2. Observe that the only point where the regularity of γ is used in this
proof is in the uniform estimate of ‖Q(s)‖. However, the only thing we need is that∫

Ω
‖Q(s)‖ ds < +∞, which proves that Theorem 1.1 still holds when γ is piecewise

C1.

It remains to give the proof of the lemma. Using Caccioppoli-like inequality or
nodal sets of eigenfunctions of Sturm-Liouville operators, one can give a more direct
proof of this lemma. The advantage of the proof given here is that it can be more
easily extended to the discrete setting (see Section 3.4).

Proof (of Lemma 2.1). From (8) we can write

(14) Rk
(
|φk(y)|2 +

γ(y)

λk
|φ′k(y)|

)
≤ |φk(x)|2 +

γ(x)

λk
|φ′k(x)|2, ∀x, y ∈ Ω.

We recall that φk satisfies the Dirichlet boundary condition φk(0) = φk(1) = 0, so
that by choosing x = 0 and x = 1 in the previous inequality, we obtain in particular

γ(0)

λk
|∂lφk|2 ≥ Rk|φk(y)|2, ∀y ∈ Ω,

and
γ(1)

λk
|∂rφk|2 ≥ Rk|φk(y)|2, ∀y ∈ Ω.

Since the left-hand side does not depend on y, and thanks to the normalisation con-
dition ‖φk‖L2(Ω) = 1, we can integrate those inequalities with respect to y to obtain

γ(0)

λk
|∂lφk|2 ≥ Rk, and

γ(1)

λk
|∂rφk|2 ≥ Rk.

Consider now any non empty open subset ω ⊂ Ω. Without loss of generality we can
assume that ω is a non-empty interval. Split ω in three consecutive disjoint intervals
of same measure : ω1, ω2 and ω3.

• Suppose that there exists ak ∈ ω1 and bk ∈ ω3 such that

(15) φk(ak)φ′k(ak) ≥ 0 and φk(bk)φ′k(bk) ≤ 0.
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We multiply the equation Aφk = λkφk by φk and integrate by parts on
(ak, bk). We get

− [γ(x)φ′k(x)φk(x)]
bk
ak︸ ︷︷ ︸

≤0

+

∫ bk

ak

(
γ(x) (φ′k(x))

2
+q(x)φ2

k(x)

)
dx = λk

∫ bk

ak

φ2
k(x)dx

thus,

(16)

∫ bk

ak

γ(x) (φ′k(x))
2
dx ≤ (λk + ‖q‖∞)

∫ bk

ak

φ2
k(x)dx.

We come back to (14) that we integrate on the whole domain Ω with respect
to the variable y and on the interval (ak, bk) with respect to the variable x.
With the normalisation condition on φk and (16) we obtain:

Rk(bk − ak) ≤
∫ bk

ak

φ2
k(x) +

γ(x)

λk
(φ′k(x))2dx ≤

(
2 +
‖q‖∞
λ1

)∫ bk

ak

φ2
k(x)dx.

Using that ak ∈ ω1 and bk ∈ ω3 we get bk − ak ≥ |ω2| = |ω|
3 and we finally

obtain the claimed lower bound

Rk
|ω|
3
≤ Rk(bk − ak) ≤ C

∫
ω

φ2
k(x)dx.

• Suppose now that either

(17) ∀x ∈ ω1, φk(x)φ′k(x) < 0

or

(18) ∀x ∈ ω3, φk(x)φ′k(x) > 0,

hold. We only consider the second case (18), since the case (17) is similar.

Remark 2.3. Notice that from condition (18), we can deduce that either φk
is positive and increasing on ω3 or φk is negative and decreasing on ω3. Note
also that this condition implies that : x→ |φ|(x) is strictly increasing on ω3.

We split ω3 in two consecutive subintervals ω3,1 and ω3,2 of same measure.

First case : Suppose that there exists x0 ∈ ω3,1 such that γ(x0)
λk
|φ′k(x0)|2 ≤

Rk
2 . This assumption and inequality (14) give

|φk(x0)|2 +
Rk
2
≥ |φk(x0)|2 +

γ(x0)

λk
|φ′k(x0)|2 ≥ Rk|φk(y)|2, ∀y ∈ Ω,

and integrating on Ω with respect to the variable y, we get:

|φk(x0)|2 ≥ Rk
2
.

According to Remark 2.3, |φ|2 is increasing on ω3. Thus, integrating on ω3,2,
we obtain ∫

ω3,2

|φk(x)|2dx ≥ CRk|ω|.
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Second case : Suppose now that ∀x0 ∈ ω3,1,
γ(x0)
λk
|φ′k(x0)|2 > Rk

2 . Let us
integrate the square root of this inequality on ω3,1∫

ω3,1

|φ′k(x0)|dx0 > C
√
λkRk|ω3,1|.

According to Remark 2.3, φk is monotonic on ω3 so
∫
ω3,1
|φ′k(x0)|dx0 =

|
∫
ω3,1

φ′k(x0)dx0|. Denote by a3,1 < b3,1 the end points of ω3,1. We have

|φk(b3,1)− φk(a3,1)| > C
√
λkRk|ω3,1|,

and thus, since |φk| is increasing,

2|φk(b3,1)| > C
√
λkRk|ω3,1|.

Hence,∫
ω

|φk|2(x)dx ≥
∫
ω3,2

|φk|2(x)dx ≥ |φk(b3,1)|2|ω3,2| ≥ CλkRk|ω|3,

which concludes the proof.

3. Discrete spectral properties.

3.1. General strategy. As previously stated, our goal here is to prove quali-
tative spectral properties for the eigenelements of the discrete elliptic operator Ah.
We shall adapt Theorem 1.1 to the discrete setting by mimicking the proof given in
Section 2. We start by the following preliminary result. Its proof is postponed to
Section 3.4. We recall that we have assumed that q ≥ 0.

Lemma 3.1. Assume that assumption (H0) holds. Let ω be a non-empty open
subset of Ω and β > 0. There exist h1(q, γ, β) > 0, h2(q, γ, ω, β) > 0 and C1(q, γ, β) >
0, C2(q, γ, ω, β) > 0 such that for any mesh of Ω such that Θh ≤ β, we have

1

λhk
|∂bφhk |2 ≥ C1Rhk , ∀b ∈ {l, r}, ∀k ∈ J1, NK,

as soon as h ≤ h1 and

‖φhk‖2L2(ωh) ≥ C2Rhk , ∀k ∈ J1, NK,

as soon as h ≤ h2, where we have defined

(19) Rhk := min
i,j∈J1,N+1K

|φhi,k|2 +
γi−1/2

λhk

∣∣∣∣φhi,k−φhi−1,k

hi−1/2

∣∣∣∣2
|φhj,k|2 +

γj−1/2

λhk

∣∣∣φhj,k−φhj−1,k

hj−1/2

∣∣∣2 .
This lemma shows that, to obtain (possibly uniform in k and h) lower bounds on

|∂bφhk |/
√
λhk and ‖φhk‖L2(ωh) it is enough to obtain lower bounds on Rhk .

To this end, we propose the following transformation of the discrete second order
equation into a suitable first order system.
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Lemma 3.2. We consider a given mesh of Ω, fh a vector of RN , λ > 0 and we
assume that uh ∈ RN satisfies the discrete equation

(20) Ahuh = λuh + fh.

Then, the following relation holds for any j ∈ J1, NK

(21) Uhj+1 =
(
I + hjM

h
j

)
Uhj + hj

(
QhjU

h
j + Fhj

)
,

where we have defined the families of vectors

Uhj :=

(
uhj√

γj−1/2

λ

uhj−u
h
j−1

hj−1/2

)
and Fhj :=

−hj+1/2
fhj

γj+1/2

− fhj√
γj+1/2λ

 ,

as well as the families of matrices

(22) Mh
j :=

−hj−1/2
λ

γj+1/2

hj+1/2

hj

√
λ

γj+1/2

−
√

λ
γj+1/2

0

 ,

and

Qhj :=

hj+1/2
qj

γj+1/2
hj+1/2

√
λγj−1/2

γj+1/2

1√
γj+1/2

− 1√
γj−1/2

hj

qj√
λγj+1/2

√
γj−1/2

1√
γj+1/2

− 1√
γj−1/2

hj

 .

Remark 3.1. Note that the matrix
(
I + hjM

h
j

)
is a one step propagator which is

the discrete analogue of exp
(∫ xj+1

xj
M(s)ds

)
.

We shall make use of the following estimates.

Lemma 3.3. For any mesh of size N and any γ, q satisfying (H0), we have the
inequalities

γmin
(Θh)2

λ
h∗
k − ‖q‖L∞ ≤ λ

h
k ≤ (Θh)2‖γ‖L∞λ

h∗
k + ‖q‖L∞ , ∀k ∈ J1, NK,

where λ
h∗
k was defined in Remark 1.3. In particular, for any β > 0, there exists

C1, C2, C3 > 0 depending only on γ, q and β such that for any mesh satisfying Θh ≤ β
we have the inequalities

C1k
2 − C2 ≤ λhk ≤ C3k

2 + C2, ∀k ∈ J1, NK,

h2λhk ≤ C2, ∀k ∈ J1, NK.

The proof relies on Remark 1.3 and the min-max principle. It is a straightforward
computation that we leave to the reader. Those estimates can be seen as discrete
versions of (2).

Proof (of lemma 3.2). The proof of (21) is a tedious but simple computation.



SPECTRAL ANALYSIS OF DISCRETE ELLIPTIC OPERATORS AND APPLICATIONS 17

The second component of Uhj+1 − Uhj satisfies√
γj+1/2

λ

uhj+1 − uhj
hj+1/2

−
√
γj−1/2

λ

uhj − uhj−1

hj−1/2

=
1√

λγj+1/2

(
γj+1/2

uhj+1 − uhj
hj+1/2

− γj−1/2

uhj − uhj−1

hj−1/2

)

+
uhj − uhj−1

hj−1/2

√
γj−1/2

λ

√
γj−1/2

(
1

√
γj+1/2

− 1
√
γj−1/2

)

=− hj

(
λ− qj√
λγj+1/2

)
uhj − hj

fhj√
λγj+1/2

+
uhj − uhj−1

hj−1/2

√
γj−1/2

λ
hj
√
γj−1/2

( 1√
γj+1/2

− 1√
γj−1/2

hj

)
,

where we used the original equation (20) in the last equality, whereas for the first
component, we simply write

uhj+1 − uhj =

(
hj+1/2

√
λ

γj+1/2

)√
γj+1/2

λ

uhj+1 − uhj
hj+1/2

.

It follows, in vectorial form, the following equality

Uhj+1 − Uhj =

(
0 hj+1/2

√
λ

γj+1/2

0 0

)
Uhj+1 +

(
0 0

−hj
√

λ
γj+1/2

0

)
Uhj

+

 0 0

hj
qj√

λγj+1/2

hj
√
γj−1/2

( 1√
γj+1/2

− 1√
γj−1/2

hj

)Uhj

+

(
0

−hj
fhj√

γj+1/2λ

)
.

This is not yet the required form since Uhj+1 appears in the right-hand side. Thus, we

collect the terms in Uhj+1 in the left-hand side as follows(
1 −hj+1/2

√
λ

γj+1/2

0 1

)
Uhj+1 =

(
1 0

−hj
√

λ
γj+1/2

1

)
Uhj

+

 0 0

hj
qj√

λγj+1/2

hj
√
γj−1/2

( 1√
γj+1/2

− 1√
γj−1/2

hj

)Uhj +

(
0

−hj
fhj√

γj+1/2λ

)
,

and we get the claim by multiplying the previous equality by(
1 hj+1/2

√
λ

γj+1/2

0 1

)
,

which is nothing but the inverse of the 2 × 2 matrix appearing in the left-hand side
term.
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For any j, k ∈ J1, NK, we denote by Qhj,k, Mh
j,k the matrices as defined in the

previous lemma for the particular value λ = λhk . Using the uniform bounds on the
discrete eigenvalues obtained in Lemma 3.3, one can easily deduce that there exists a
C(q, γ,Θh) > 0 but independent of h such that

(23) ‖Qhj,k‖ ≤ C, and ‖Mh
j,k‖ ≤ C

√
λhk , ∀h > 0, ∀j, k ∈ J1, NK,

and moreover, if γ is assumed to be constant then we have the additional estimate

(24) ‖Qhj,k‖ ≤ C

hj+1/2 +
1√
λhk

 , ∀h > 0, ∀j, k ∈ J1, NK.

3.2. Estimates in the general case (S1). We are now in position to prove
our first results in the more general case we shall consider, that is the setting (S1).

Theorem 3.1. Let γ and q satisfying (H0), ω a non empty open subset of Ω
and β > 0. There exists h1(q, γ, β) > 0, h2(q, γ, ω, β) > 0 and C(q, γ, β) > 0,
C1(q, γ, β) > 0, C2(q, γ, ω, β) > 0 such that the following lower bounds hold for any
mesh of Ω such that Θh ≤ β

1√
λhk

∣∣∂bφhk∣∣ ≥ C1e
−C
√
λhk , ∀k ∈ J1, NK, ∀b ∈ {l, r},

as soon as h ≤ h1 and

‖φhk‖2L2(ωh) ≥ C2e
−C
√
λhk , ∀k ∈ J1, NK,

as soon as h ≤ h2.
Moreover, if γ and q satisfy hypothesis (H2), there exists C3(q, γ, β) > 0 and

α(q, γ, β) > 0 such that

λhk+1 − λhk ≥ C3k, ∀k ∈ J1, αN2/5K.

Proof. Let k ∈ J1, NK. We apply Lemma 3.2 with uh := φhk =
(
φhp,k

)
p∈J1,NK

,

λ = λhk and fh = 0. The vectors Uhj are then denoted by Uhj,k to keep track of the

dependence on k. Moreover, with those notations, the quantity Rhk defined in (19)
can be expressed as

(25) Rhk = inf
i,j∈J1,N+1K

‖Uhi,k‖2

‖Uhj,k‖2
.

Therefore, to obtain the announced lower bound, we only have to obtain a bound of
‖Uhj,k‖ by ‖Uhi,k‖ for any two indices i, j.

From the estimate (23) and the standard inequality 1 + t ≤ et,∀t ≥ 0, we find the
upper-bound

‖I + hjM
h
j,k + hjQ

h
j,k‖ ≤ exp

(
hjC

√
λhk

)
, ∀j ∈ J1, NK.

Direct computations, similar to the ones in the proof Lemma 3.2, also show that

‖
(
I + hjM

h
j,k + hjQ

h
j,k

)−1 ‖ ≤ exp

(
hjC

√
λhk

)
, ∀j ∈ J1, NK.
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Then, using (21) with fh = 0, we immediately obtain

exp

(
−C
√
λhk

)
‖Uhj,k‖ ≤ ‖Uhi,k‖, ∀i, j ∈ J1, N + 1K.

By (25) and Lemma 3.1, the claim follows.
We now prove the gap property for a part of the spectrum. To this end, we will

use Proposition 3.1 below. Take k a positive integer such that k ≤ αN2/5, where
α(q, γ, β) > 0 will be chosen later on. Then, ∃C̄(q, γ, β) > 0, such that

λhk+1 − λhk ≥ λk+1 − λk − |λhk+1 − λk+1| − |λhk − λk|
≥ C̄k − Ch2λ3

k

≥ C̄k − Ch2k6,

and the last inequality comes from (2). Now since

h2k6 = (h2k5)k ≤ (h2α5N2)k ≤ Θ2
hα

5k ≤ β2α5k,

we can write

λhk+1 − λhk ≥ C̄k − Cβ2α5k.

Now take α such that C̄ ≥ 2Cβ2α5 to get

λhk+1 − λhk ≥
C̄

2
k.

This concludes the proof.

We have used above the following somehow standard numerical analysis result,
whose proof is omitted. It can be obtained by similar techniques as in [5] and [19]
and using the convergence analysis of finite difference methods on general grids given
in [4].

Proposition 3.1. Assume that q and γ satisfy (H2). For any β > 0, there exists
C(γ, q, β) > 0, such that for any mesh satisfying Θh ≤ β, we have

|λhk − λk| ≤ Ch2λ3
k, ∀k ∈ J1, NK.

3.3. Estimates for of a uniform grid, cases (S2) and (S3). In the previous
subsection, the exponentially small lower bound comes from the crude estimate of

the norm of the propagation matrix I + hjM
h
j,k by 1 + Chj

√
λhk . Besides, as noticed

in Remark 3.1, the counter-part in the continuous case of this propagation matrix is
exp

( ∫ xj+1

xj
M(s) ds

)
which is a unitary matrix (see the proof of Lemma 2.3).

Thus, our objective is now to improve those estimates in the case of a uniform
mesh. To this end, we introduce the discrete resolvant Shi←j,k defined by

Shi←j,k :=


(
I + hMh

i−1,k

) (
I + hMh

i−2,k

)
· · ·
(
I + hMh

j,k

)
for i > j

I for i = j

(Shj←i,k)−1 for i < j

and for which we will be able to prove sharper estimates. Observe that each matrix
I + hMh

i,k is invertible since its determinant is equal to one for a uniform grid (see
(22)).
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Lemma 3.4. With the same notations as in Lemma 3.2, there exists C(q, γ) > 0,
and h0(q, γ) > 0, such that for any h < h0, and any i, j ∈ J1, N + 1K,

(26) ‖Uhi,k‖ ≤ C exp

C ∑
p∈Ji,jK\{i}

h‖Shi←p+1,k‖‖Qhp,k‖


×

‖Shi←j,k‖‖Uhj,k‖+
∑

p∈Ji,jK\{i}

h‖Shi←p+1,k‖‖Fhp,k‖

 .
Proof. Let i, j ∈ J1, N + 1K. From (21), discrete Duhamel formula gives

(27) for i > j : Uhi,k = Shi←j,kU
h
j,k + h

i−1∑
p=j

Shi←p+1,k

(
Qhp,kU

h
p,k + Fhp,k

)
,

(28) for i < j : Uhi,k = Shi←j,kU
h
j,k − h

j−1∑
p=i

Shi←p+1,k

(
Qhp,kU

h
p,k + Fhp,k

)
.

So for any i, j ∈ J1, N + 1K,

‖Uhi,k‖ ≤ ‖Shi←j,k‖‖Uhj,k‖+ h
∑

p∈Ji,jK

‖Shi←p+1,k‖
(
‖Qhp,k‖‖Uhp,k‖+ ‖Fhp,k‖

)
.

Using the bound (23) on ‖Qhi,k‖,

‖Uhi,k‖
(
1− Ch‖Shi←i+1,k‖

)
≤ ‖Shi←j,k‖‖Uhj,k‖

+ h
∑

p∈Ji,jK\{i}

‖Shi←p+1,k‖
(
‖Qhp,k‖‖Uhp,k‖+ ‖Fhp,k‖

)
.

Note also that ‖Shi←i+1,k‖ = ‖I + hMh
i,k‖ ≤ 1 + Ch

√
λhk . Thus, by Lemma 3.3 and

Remark 1.3 (remember that the mesh is assumed to be uniform), for h small enough
and some C(q, γ) > 0, we have

‖Uhi,k‖ ≤ C‖Shi←j,k‖‖Uhj,k‖+ Ch
∑

p∈Ji,jK\{i}

‖Shi←p+1,k‖
(
‖Qhp,k‖‖Uhp,k‖+ ‖Fhp,k‖

)
.

We conclude with discrete Gronwall’s Lemma.

We recall that in the continuous case we had the fundamental property that
‖S(x0, x)‖ = 1. Here we will not obtain that the discrete resolvant Shj←i,k is unitary
but we are able to produce uniform bounds on this object at least for a well chosen
portion of the discrete spectrum.

Suppose that q and γ satisfy assumption (H0). For any ε ≥ 0, we define the
following integer

(29) khmax,ε := max

{
k ∈ J1, NK; λhk <

4

h2
γmin(1− ε)

}
.
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Proposition 3.2. Let q and γ satisfying (H0). There exists h0(q, γ) > 0 and
C(q, γ) > 0 such that, for any ε > 0 and any uniform mesh of size h < h0, we have
the estimate

(30) ‖Shi←j,k‖ ≤ C exp

(
C

ε

)
, ∀i, j ∈ J1, N + 1K, ∀k ∈ J1, khmax,εK.

If we additionally assume that the diffusion coefficient γ is constant, then the
following estimate holds for the whole spectrum of Ah, for any h < h0

(31) ‖Shi←j,k‖ ≤
C√

1− h2

4γ (λhk − ‖q‖L∞)
, ∀i, j ∈ J1, N + 1K, ∀k ∈ J1, NK.

Note that, by Lemma 3.3 and Remark 1.3, there exists a α(q, γ) > 0 such that

khmax,ε ≥ αN
√

1− ε, ∀h > 0.

Thus, inequality (30) in the previous proposition gives actually a uniform estimate of
Sh•←•,k for (at least) a constant portion of the eigenelements of the discrete operator

Ah.

Proof. Since Shi←j,kU
h
j,k = Uhi,k, the study of the norm of Shi←j,k amounts in ob-

taining a bound on Uhi,k in function of Uhj,k, for any i, j, where Uh•,k is any solution of
the recurrence relation

(32) Uhi+1,k =
(
I + hMh

i,k

)
Uhi,k, ∀i ∈ J1, N + 1K.

To simplify the notation in this proof, we shall sometimes drop the indices h and k
but we keep in mind that the condition k ≤ khmax,ε implies that the eigenvalue λ = λhk
we are considering satisfies the bound

(33) λ <
4

h2
γmin(1− ε).

If we denote by xi, yi the two components of Ui, according to (22), relation (32) reads

(34)


xi+1 = xi

(
1− h2λ

γi+1/2

)
+ yih

√
λ

γi+1/2
,

yi+1 = −xih

√
λ

γi+1/2
+ yi.

The key-point is now to introduce the following quantity

(35) Hi := x2
i + y2

i − h

√
λ

γi+1/2
xiyi.

As we will see below, this quantity is conserved in the recurrence process (Hi+1 = Hi),
when γ is constant. However, in the general case, this conservation does not hold
anymore and we need sharper estimates.
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After some tedious but straightfoward computations, we end up with the following
identity

(36) Hi+1 = Hi +

(
1

√
γi+1/2

− 1
√
γi+3/2

)

×

[
x2
i

h2λ
√
γi+1/2

(
h2λ

γi+1/2
− 1

)
+ y2

i

h2λ
√
γi+1/2

+ xiyih
√
λ

(
1− 2h2λ

γi+1/2

)]
.

Using the regularity assumptions on γ and the mean-value theorem, we deduce that
for some C(γ) > 0

|Hi+1| ≤ |Hi|+ hC(γ)

[
2h2λ
√
γmin

(
h2λ

γmin
+ 1

)
+
h
√
λ

2

(
1 +

2h2λ

γmin

)]
(x2
i + y2

i ).

Moreover, we know from Lemma 3.3 that the quantity h2λ is uniformly bounded by
some constant depending only on q and γ. It finally follows that, for some C(q, γ) > 0,
we have

(37) |Hi+1| ≤ |Hi|+ hC
(
x2
i + y2

i

)
, ∀i ∈ J1, NK.

Besides, from definition (35) of Hi, we easily get that

(38)
(
x2
i + y2

i

)(
1− h

2

√
λ

γi+1/2

)
≤ Hi ≤

(
x2
i + y2

i

)(
1 +

h

2

√
λ

γi+1/2

)
.

Using again that h2λ is uniformly bounded, the right-hand side term can be replaced
by some C(x2

i +y2
i ). However, the factor in front of (x2

i +y2
i ) in the left-hand side may

become negative for large eigenvalues. That is exactly the reason why the condition
(33) on λ (which is nothing but the condition on k in the statement of the proposition)
enters into the analysis. Indeed, if we assume (33), the above inequalities become

(39)
ε

2

(
x2
i + y2

i

)
≤ Hi ≤ C(q, γ)

(
x2
i + y2

i

)
.

From (37), we can thus infer that

|Hi+1| ≤ |Hi|+
C

ε
h|Hi| ≤ exp(hC/ε)|Hi|, ∀i ∈ J1, NK,

and finally, for any i ≥ j, we get

|Hi| ≤ exp((i− j)hC/ε)|Hj | ≤ exp(C/ε)|Hj |.

Using again (39), we deduce that

(x2
i + y2

i ) ≤ C

ε
exp

(
C

ε

)(
x2
j + y2

j

)
.

This exactly shows (30) in the case where i ≥ j.
To prove the same equality for j ≥ i, we come back to the equality (36) to get

(40) |Hi| ≤ |Hi+1|+ Ch(x2
i + y2

i ).
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Then, from (34), we find

(
xi
yi

)
=

 1 −h
√

λ
γi+1/2

h
√

λ
γi+1/2

1− h2 λ
γi+1/2

(xi+1

yi+1

)

and using again that h2λ is uniformly bounded we obtain that, for some C(q, γ) > 0,

x2
i + y2

i ≤ C(x2
i+1 + y2

i+1), ∀i ∈ J1, NK.

Hence, (40) becomes

|Hi| ≤ |Hi+1|+ Ch(x2
i+1 + y2

i+1) ≤ |Hi+1|
(

1 +
C

ε
h

)
,

and we can argue as before to prove our claim, when j ≥ i.
Let us consider now the case where γ is constant.
• We first assume that the eigenvalue satisfies

(41)
h2λ

4γ
≤ 1− h2

γ
.

Since γ is constant, we have Hi = Hj for any i, j (see (36)) and from (38) we
have (

1− h

2

√
λ

γ

)(
x2
i + y2

i

)
≤ Hi = Hj ≤ C

(
x2
j + y2

j

)
.

By (41), we observe that the first factor in the left-hand side is positive, so
that we can write

x2
i + y2

i ≤
C

1− h
2

√
λ
γ

(x2
j + y2

j ), ∀i, j ∈ J1, N + 1K,

and the claim follows since, using again (41), we have

1

1− h
2

√
λ
γ

=
1 + h

2

√
λ
γ

1− h2λ
4γ

≤ C

1− h2λ
4γ

≤
C
(

1 + ‖q‖∞
4

)
1− h2(λ−‖q‖L∞ )

4γ

.

• Assume now that the eigenvalue does not satisfy (41). By Lemma 3.3 and
Remark 1.3, this implies that

(42) 1− h2

γ
<
h2λ

4γ
≤ 1− h2 +

h2‖q‖L∞
4γ

.

We set λ̃ = λ−‖q‖L∞ . We denote by M̃h
•,k and S̃h•←•,k the same matrices as

Mh
•,k and Sh•←•,k with λ replaced by λ̃. An explicit computation shows that,

for h small enough and using the left-hand side inequality of (42), we have

(43) ‖Mh
i,k − M̃h

i,k‖ ≤ C
|λ− λ̃|
√
λ+

√
λ̃
≤ Ch, ∀i ∈ J1, NK.
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Since, by construction, λ̃ satisfies the assumption (41), we have that

(44) ‖S̃hi←j,k‖ ≤
C√

1− h2λ̃
4γ

, ∀i, j ∈ J1, N + 1K.

With those notations, the recurrence relation (32) can be written as follows

(45) Uhi+1,k =
(

I + hM̃h
i,k

)
Uhi,k + h(Mh

i,k − M̃h
i,k)Uhi,k, ∀i ∈ J1, N + 1K.

This formula has the same form as (21) with Fhi,k = 0 and Qhi,k = Mh
i,k−M̃h

i,k

so that we can use the inequality (26) in this context, as well as (43) and
(44), to finally get

‖Uhi,k‖ ≤
C√

1− h2λ̃
4γ

exp

 Ch√
1− h2λ̃

4γ

 ‖Uhj,k‖, ∀i, j ∈ J1, N + 1K.

Finally, since λ̃ satisfies (41), we have
√

1− h2λ̃
4γ ≥

h√
γ which proves that the

exponential factor in the estimate above is actually uniformly bounded. It
follows that

‖Uhi,k‖ ≤
C√

1− h2λ̃
4γ

‖Uhj,k‖, ∀i, j ∈ J1, N + 1K,

which exactly proves the claimed estimate.

We can now state and prove the following discrete spectral estimates in the setting
(S2).

Theorem 3.2 (The case of a uniform grid). Let γ and q satisfying (H0), ω ⊂ Ω
a non empty open subset of Ω and ε > 0. There exists h1(q, γ) > 0, h2(q, γ, ω) > 0
and C1(q, γ, ε) > 0, C2(q, γ, ω, ε) > 0 so that for any uniform mesh of size h, we have

1√
λhk

∣∣∂bφhk∣∣ ≥ C1, ∀k ∈ J1, khmax,εK, ∀b ∈ {l, r},∀h < h1,

‖φhk‖2L2(ωh) ≥ C2, ∀k ∈ J1, khmax,εK,∀h < h2,

and

λhk+1 − λhk ≥ C1

√
λhk+1, ∀k ∈ J1, khmax,ε − 1K, ∀h < h1.

Proof. We apply Lemma 3.2 with uh = φhk , λ = λhk and fh = 0. From Lemma
3.4 and inequality (30), we get for i, j ∈ J1, N + 1K,

‖Uhi,k‖ ≤ C exp

exp(C/ε)C
∑

p∈Ji,jK\{i}

h‖Qhp,k‖

× exp(C/ε)‖Uhj,k‖.

According to (23), we have a uniform bound ‖Qhp,k‖ ≤ C, so that we finally obtain

‖Uhi,k‖ ≤ C(q, γ, ε)‖Uhj,k‖, ∀i, j ∈ J1, N + 1K.
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By (25), we just have shown that

Rhk ≥
1

C(q, γ, ε)2
,

which gives the first two lower bounds by virtue of Lemma 3.1.
Let us now estimate the difference λhk+1 − λhk for any k ∈ J1, khmax,ε − 1K. We

follow the same lines as in the proof in the continuous case in Section 2. We set
uh = (∂rφ

h
k)φhk+1 − (∂rφ

h
k+1)φhk and fh = (λhk+1 − λhk)(∂rφ

h
k+1)φhk , so that (20) is

satisfied with λ = λhk+1. We use the same notation as in Lemma 3.2, and we observe
that

UhN+1 =

(
uhN+1√

γN+1/2

λhk+1

∂ru
h

)
=

(
0
0

)
,

since φhk+1 and φhk satisfy the homogeneous boundary conditions and moreover, by

construction, ∂ru
h = 0.

We can then apply Lemma 3.4, with j = N + 1, and the estimates (23) and (30)
to get

‖Uhi ‖ ≤ C(q, γ, ε)
∑

p∈Ji,jK\{i}

h‖Fhp ‖, ∀i ∈ J1, N + 1K.

By definition of Fh and fh, we have

‖Fhp ‖ ≤
C(γ)√
λhk+1

(λhk+1 − λhk)|∂rφhk+1||φhp,k|, ∀p ∈ J1, NK.

Since φhk is normalized in L2(Ωh) we conclude that

‖Uhi ‖ ≤
C(q, γ, ε)√

λhk+1

(λhk+1 − λhk)|∂rφhk+1|.

By definition of Uhi , we have |uhi | ≤ ‖Uhi ‖ for any i ∈ J1, NK and thus, the discrete L2

norm of uh is estimated by

‖uh‖2L2(Ωh) ≤
C(q, γ, ε)

λhk+1

|λhk+1 − λhk |2|∂rφhk+1|2.

By definition of uh and since φhk+1 and φhk are orthonormal we have

‖uh‖2L2(Ωh) = (∂rφ
h
k+1)2 + (∂rφ

h
k)2.

Combining the two previous inequalities (and using that ∂rφ
h
k+1 6= 0) we finally get

1 ≤ C(q, γ, ε)

λhk+1

|λhk+1 − λhk |2,

which gives the claim.

Finally, in the case of a constant diffusion coefficient and uniform grids we obtain
a stronger result with precise lower bounds for all the eigenfunctions of Ah.
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Theorem 3.3 (Uniform grid - constant diffusion). Let q be a continuous function
on Ω and assume that γ is a constant function. Let ω ⊂ Ω be a non-empty open subset
of Ω. There exist h1(q, γ) > 0, h2(q, γ, ω) > 0 sufficiently small and C1(q, γ) > 0,
C2(q, γ, ω) > 0 such that for any uniform mesh of size h, we have for h < h1,

1√
λhk

∣∣∂bφhk∣∣ ≥ C1

√
1−

h2(λhk − ‖q‖L∞)

4γ
, ∀k ∈ J1, NK, ∀b ∈ {l, r},

and

‖φhk‖2L2(ωh) ≥ C2

(
1− h2(λhk − ‖q‖L∞)

4γ

)
, ∀k ∈ J1, NK,

for h < h2. Moreover,

λhk+1 − λhk ≥ C1

√
λhk+1

√
1−

h2(λhk+1 − ‖q‖L∞)

4γ
, ∀k ∈ J1, N − 1K,

as soon as h < h1.

Proof. We shall use the notation λ̃hk = λhk − ‖q‖L∞ . We follow exactly the same
lines as in the proof of the previous theorem, except that the estimate (30) is now
improved into (31). It follows that, for any i, j ∈ J1, N + 1K we have

‖Uhi,k‖ ≤
C√

1− h2

4

λ̃hk
γ

exp

 C√
1− h2

4

λ̃hk
γ

∑
p∈Ji,jK\{i}

h‖Qhp,k‖

 ‖Uhj,k‖.
According to (24), we have the bound ‖Qhp,k‖ ≤ C

(
h+ 1√

λhk

)
, for any p and thus

‖Uhi,k‖ ≤
C√

1− h2λ̃hk
4γ

exp

C h+ 1√
λhk√

1− h2λ̃hk
4γ

 ‖Uhj,k‖.
It remains to prove that the exponential factor is actually uniformly bounded.

• Assume first that h2λ̃hk ≤ γ, so that we have√
1−

h2λ̃hk
4γ
≥
√

3/4,

and the exponential term above is clearly bounded.
• Assume now that γ ≤ h2λ̃hk . We have already seen that we also have h2λ̃hk ≤

4γ(1− h2) so that √
1−

h2λ̃hk
4γ
≥ h,

and then

h+ 1√
λhk√

1− h2λ̃hk
4γ

≤

1 +
1

h
√
λhk

 ≤
1 +

1

h
√
λ̃hk

 ≤ (1 +
1
√
γ

)
,

and we reach the same conclusion.
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To sum up, we have just proved that

‖Uhi,k‖ ≤
C√

1− h2λ̃hk
4γ

‖Uhj,k‖,

which implies, with (25), that

Rhk ≥ C

(
1− h2λ̃hk

4γ

)
, ∀k ∈ J1, NK.

With Lemma 3.1 the first two inequalities are proved.
As in the proof of Theorem 3.2, the gap property is proved by defining uh =

(∂rφ
h
k)φhk+1 − (∂rφ

h
k+1)φhk and fh = (λhk+1 − λhk)(∂rφ

h
k+1)φhk , and using the uniform

estimate above on exp

C h+ 1√
λh
k√

1−
h2λ̃h

k
4γ

.

A careful inspection of the arguments in the above proof shows that we have the
estimate

λhk

(
1− h2

4γ
(λhk − ‖q‖∞)

)
≥ C(q, γ), ∀k ∈ J1, NK.

This immediately gives the following corollary

Corollary 3.1. With the same assumptions and notations as in the previous
theorem (the values of C1 and C2 being possibly different) we have∣∣∂bφhk∣∣ ≥ C1, ∀k ∈ J1, NK, ∀b ∈ {l, r},

λhk+1 − λhk ≥ C1, ∀k ∈ J1, N − 1K,

as soon as h < h1, and

‖φhk‖2L2(ωh) ≥
C2

λhk
, ∀k ∈ J1, NK,

as soon as h < h2.

3.4. Proof of Lemma 3.1.

Proof. We follow exactly the same arguments as the ones given in the proof of
Lemma 2.1. For the sake of completeness, we provide here some technical precisions.

• Let us prove that

(46)
1

λhk
|∂bφhk |2 ≥ CRhk , ∀b ∈ {l, r}.

We recall, from (19), the following identity for i, j ∈ J1, N + 1K

Rhk

|φhi,k|2 +
γi−1/2

λhk

∣∣∣∣∣φhi,k − φhi−1,k

hi−1/2

∣∣∣∣∣
2
 ≤ |φhj,k|2 +

γj−1/2

λhk

∣∣∣∣∣φhj,k − φhj−1,k

hj−1/2

∣∣∣∣∣
2

.
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With j = N + 1, using Dirichlet boundary condition in x = 1 and summing
the left hand side for i from 1 to N , we get (46) with b = r. For the case
b = l, take j = 1 and again, sum with respect to the variable i :

Rhk ≤ |φh1,k|2 +
γ1/2

λhk

∣∣∣∣∣φh1,k − 0

h1/2

∣∣∣∣∣
2

=

(
h2

1/2 +
γ1/2

λhk

) ∣∣∣∣∣φh1,k − 0

h1/2

∣∣∣∣∣
2

According to Lemma 3.3, h2
1/2λ

h
k ≤ C(q, γ, β), so Rhk ≤

C(q,γ,β)

λhk

∣∣∣∣φh1,k−0

h1/2

∣∣∣∣2.

• Denote by ωhj , j ∈ {1, 2, 3} the set of mesh points which belong to ωj . In the
discrete setting, hypothesis (15) is replaced by: suppose that there exists xi1
and xi3 two points of ωh1 and ωh3 respectively, such that

(47) φhi1,k
(
φhi1,k − φ

h
i1−1,k

)
≥ 0 and φhi2,k

(
φhi2+1 − φhi2

)
≤ 0.

Thus, when multiplying the equation Ahφhk = λhkφ
h
k by φhk and summing

between i1 and i3, the discrete integration by parts leads to boundary terms
(which are the analogues of [γ(x)φ′k(x)φk(x)]

bk
ak

) that are again non positive
thanks to (47).

• Remark 2.3 still holds in the discrete setting. Indeed, denote by i0 the index
of the first point of ωh3 and suppose that for all indices i ∈ {1, . . . , N} such

that xi ∈ ωh3 , we have φhi,k

(
φhi+1,k − φhi,k

)
> 0. If φhi0,k > 0 then (φhi,k)i, xi∈ωh3

is increasing and positive, else if φhi0,k < 0 then (φhi,k)i, xi∈ωh3 is decreasing and
negative.
Moreover, given that for all i ∈ {1, . . . , N} such that xi ∈ ωh3 ,

0 < φhi,k
(
φhi+1,k − φhi,k

)
=

1

2

(
(φhi+1,k)2 − (φhi,k)2

)
− 1

2

[
(φhi+1,k)− (φhi,k)

]2
,

we conclude that (|φhi,k|2)i,xi∈ωh3 is increasing on ωh3 .

4. Numerical illustrations. In this section we provide a few numerical simula-
tions that aim at illustrating our theoretical results on the discrete spectral properties
of the operator Ah obtained in the previous section. We will consider the following
two control/observation domains ω1 = (0, 0.3) and ω2 = (0.7, 1).

Let us introduce the following notations for any K ∈ J1, NK

Ihl (K) := min
k≤K
|∂lφhk |, Ihr (K) := min

k≤K
|∂rφhk |

Ih1 (K) := min
k≤K

‖φhk‖2L2(ω1
h)

|ω1|
, Ih2 (K) := min

k≤K

‖φhk‖2L2(ω2
h)

|ω2|
,

and
∆h(K) := min

k≤K−1
|λhk+1 − λhk |.

We are mainly interested in the values of Ih• (N) (resp. Ih• (khmax,ε)) in order to illus-
trate whether the corresponding quantities are bounded from below or not for the
whole discrete spectrum (resp. for a constant portion of the spectrum characterized
by khmax,ε, see (29)) when the mesh size tends to 0. In the tables below, each right-
hand side sub-column (with a white background) corresponds to the whole spectrum
estimate (i.e. for K = N) whereas the left-hand side sub-column (with a gray back-
ground) corresponds to the partial spectrum estimate (i.e. for K = khmax,ε). We have
chosen ε = 0.05, except for some cases for which it is explicitely mentioned.
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Figure 2: Case 1 - N = 400

Case 1. We consider γ(x) = 2 + cos(πx)3, q(x) = 0 and a family of uniform
meshes. This case corresponds to the framework (S2) and to Theorem 3.2.

N khmax,ε Ihl (·) Ihr (·) Ih1 (·) Ih2 (·) ∆h(·)
khmax,ε N khmax,ε N khmax,ε N khmax,ε N khmax,ε N

50 26 2.99 2.99 7.07 1.01−23 0.29 0.29 0.86 8.71−29 56.82 56.82

100 52 2.99 2.99 7.08 2.46−51 0.28 0.28 0.85 1.26−59 56.89 56.89

200 104 2.99 2.99 7.08 4.16−107 0.28 0.28 0.85 1.97−121 56.91 56.91

300 156 2.99 2.99 7.08 4.22−163 0.28 0.28 0.84 2.70−183 56.91 56.91

400 208 2.99 2.99 7.08 3.47−219 0.28 0.28 0.84 3.50−245 56.91 56.91

Table 1: Case 1 - behavior as h→ 0

We observe in Table 1 that, in accordance with our theoretical results, all the
partial spectrum quantities computed with K = khmax,ε (which is almost equal to N/2
here) are bounded from below.

Interestingly enough, we observe that Ihl (N) and Ih1 (N) are also uniformly bounded
from below but it is not the case for Ihr (N) and Ih2 (N). This discrepancy seems to
come from the fact that the diffusion coefficient γ is decreasing and maximal exactly
on the left boundary of the domain. For those latter quantities, the only theoretical
result we have is the one of Theorem 3.1. We can check numerically that the expo-
nential bound given in this result seems to be sharp. Indeed we have observed that,
for all the considered values of N , we have

min
k∈Jkhmax,ε,NK

log(|∂rφhk |)√
λhk

≈ −0.36, min
k∈Jkhmax,ε,NK

log(‖φhk‖L2(ω2
h))√

λhk

≈ −0.20,

so that the quantities of interest actually behaves, in the upper part of the discrete

spectrum, like e−C
√
λhk for some C independent of h.

Moreover, we observe in Figure 2b that the actual value of khmax,ε is sharp and

that ∂rφ
h
k becomes exponentially small as soon as k & khmax,0. However, in Figure

2c the exponential behavior of ‖φhk‖L2(ω2
h) seems to appear for higher values of k.

This can be explained (and actually it can be deduced by a careful observation of
our proofs) by the fact that, due to the monotonicity of γ, the minimal value of γ
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that has to be taken into account in the evaluation of khmax,ε is not its infimum on Ω
but rather its infimum on Ω \ ω2. The correct threshold in that case is thus the one
defined by

k̃hmax,ε := max

{
k ∈ J1, NK; λhk <

4

h2

(
inf

Ω\ω2
γ
)
(1− ε)

}
.

We represent the value of k̃hmax,0 in Figure 2a and 2c.
Last but not least, we observe on this particular example that the uniform gap

condition seems to be satisfied. In particular, by the methods given in Section 5, we
can then conjecture that the associated parabolic equations or systems are indeed
uniformly null-controllable by either distributed or boundary control.

Case 2. We consider now a case which is very much similar to the previous one
by setting γ(x) = 2 − cos(2πx)2, q(x) = 0 and again a family of uniform meshes.
The results are gathered in Table 2. The main difference with the previous case lie in
the fact that γ is no more monotonic and is actually symmetric with respect to the
mid-point x = 1/2 (see Fig. 3a). It appears, in this configuration, that the uniform
gap property does not hold anymore and that neither Ih1 (N) nor Ih2 (N) are uniformly
bounded from below. We illustrate further those behaviors by plotting the difference
between two successive eigenvalues in Fig. 3b as well as the last two eigenfunctions in
Fig. 3c. We observe that those two eigenfunctions are essentially supported in one half
of the domain (which explains why their L2 norm on ω1 or ω2 can be exponentially
small) and that they are almost symmetric to each other (which explains that the
corresponding eigenvalues are very close).

N khmax,ε Ihl (·) Ihr (·) Ih1 (·) Ih2 (·) ∆h(·)
khmax,ε N khmax,ε N khmax,ε N khmax,ε N khmax,ε N

50 32 6.39 1.74−3 6.39 1.74−3 0.56 0.56 0.6 0.6 33.53 4.51−8

100 64 6.41 6.85−15 6.41 7.18−30 0.59 1.75−30 0.59 2.83−42 33.58 2.91−11

200 126 6.42 3.02−63 6.42 3.80−14 0.58 8.90−87 0.58 2.81−30 33.59 2.91−11

300 187 6.42 8.41−15 6.42 9.47−97 0.61 4.41−30 0.58 1.60−131 33.59 1.16−10

400 250 6.42 2.50−130 6.42 5.30−15 0.58 7.38−176 0.58 6.02−30 33.59 6.98−10

Table 2: Case 2 - behavior as h→ 0
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Figure 3: Case 2 - N = 100
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Case 3. In this case we consider a constant diffusion coefficient γ = 1 but a
variable potential q(x) = 50 cos(πx2). We propose two subcases: in Subcase 3.1 we
still use uniform meshes families whereas in Subcase 3.2 we use families of quasi-
uniform meshes obtained by gluing a uniform mesh of (0, 1/2) with cells of size h and
a uniform mesh of (1/2, 1) made of cells of size h/2; the value of h is chosen so as we
finally obtain the expected total number N of cells. For this test case, we have chosen
ε = 0.1.

N khmax,ε Ihl (·) Ihr (·) Ih1 (·) Ih2 (·) ∆h(·)
khmax,ε N khmax,ε N khmax,ε N khmax,ε N khmax,ε N

50 43 1.12 1.12 2.92 1.7 9.97−2 9.97−2 0.31 8.77−2 44.07 21.54

100 86 1.12 1.12 2.92 1.7 9.73−2 9.73−2 0.31 8.66−2 44.21 21.56

200 172 1.12 1.12 2.92 1.7 9.60−2 9.60−2 0.3 8.61−2 44.25 21.57

300 257 1.12 1.12 2.92 1.7 9.55−2 9.55−2 0.3 8.59−2 44.26 21.57

400 343 1.12 1.12 2.92 1.7 9.53−2 9.53−2 0.3 8.58−2 44.26 21.57

Table 3: Subcase 3.1 - behavior as h→ 0

N khmax,ε Ihl (·) Ihr (·) Ih1 (·) Ih2 (·) ∆h(·)
khmax,ε N khmax,ε N khmax,ε N khmax,ε N khmax,ε N

50 26 1.12 9.49−17 2.91 2.91 0.11 1.65−18 0.25 4.11−2 43.9 43.9

100 50 1.12 9.55−16 2.92 2.92 0.1 1.74−30 0.13 1.04−2 44.17 44.17

200 96 1.12 2.91−15 2.92 2.92 9.95−2 6.68−30 0.28 8.09−4 44.24 44.24

300 144 1.12 1.24−14 2.92 2.92 9.71−2 1.32−29 0.25 3.35−4 44.25 44.25

400 190 1.12 4.26−15 2.92 2.92 9.67−2 1.93−29 0.24 8.11−4 44.26 44.26

Table 4: Subcase 3.2 - behavior as h→ 0

As predicted by Theorem 3.3 and Corollary 3.1, we observe in Table 3 that, in the
subcase 3.1 all the quantities of interest are uniformly bounded from below. However,
when considering a non uniform mesh we can see in Table 4 that the quantities Ihl (N)
and Ih1 (N) seem to be very small, but actually not exponentially small with respect to√
λ. It is interesting to observe that the right derivative term Ihr (N) is still uniformly

bounded from below as well as Ih2 (N). This is an illustration of the fact that the
bounds from below are more likely to be uniform when it concerns the finest part of
the mesh than the coarsest part.

Case 4. We conclude this series of numerical illstrations by considering the case
of a piecewise constant diffusion coefficient γ = 1]0,0.4[ + 2 × 1]0.4,1[, with q = 0 and
a family of uniform meshes. This case does not directly enter our analysis but our
arguments can be adapted and we can prove in that case (see Section 6, remark 2, for
more details) that each quantity Ih• (N) is

• either exponentially small if it concerns a part of the domain where γ takes
its lowest value (in the present example: the left normal derivative and the
L2 norm on ω1)

• or uniformly bounded from below if it concerns a part of the domain where
γ takes its highest value (here : the right normal derivative and the L2 norm
on ω2).
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N khmax,ε Ihl (·) Ihr (·) Ih1 (·) Ih2 (·) ∆h(·)
khmax,ε N khmax,ε N khmax,ε N khmax,ε N khmax,ε N

50 35 4.41 1.89−14 3.79 3.79 0.55 2.43−11 0.12 0.12 44.89 44.89

100 68 5.37 9.21−30 3.79 3.79 0.68 7.18−20 5.87−2 5.87−2 44.62 44.62

200 131 5.37 2.19−60 3.79 3.79 0.67 4.53−36 8.86−2 2.79−2 44.47 44.47

300 194 5.37 5.22−91 3.79 3.79 0.67 6.63−52 9.81−2 1.88−2 44.42 44.42

400 257 5.37 1.25−121 3.79 3.79 0.67 1.37−67 0.1 1.42−2 44.4 44.4

Table 5: Case 4 - behavior as h→ 0

5. Applications in control theory. The moments method has been success-
fully used to prove null-controllability of parabolic equations and systems, in particular
with boundary controls, see for instance [12, 2]. In section 5.1 we present this method
on the heat equation, then on cascade systems. Eventually, in Sections 5.2 and 5.3,
we show how to adapt this strategy to the discrete setting.

5.1. Null-controllability via the moments method in the continuous
setting. Let us fix y0 ∈ H−1(Ω) and consider the following control problem

(48)


∂ty(t, x) +Ay(t, x) = 1ω(x)Vd(t, x), in (0, T )× Ω

y(t, 0) = 0, y(t, 1) = Vb(t) in (0, T )

y(0, x) = y0(x) in Ω,

with Vd ∈ L2((0, T )× Ω), Vb ∈ L2(0, T ). Of course, all the results remain unchanged
if one controls (48) at the left boundary instead of the right boundary.

For a given pair of controls Vb ∈ L2(0, T ) and Vd ∈ L2((0, T )×Ω), we say that a
function y ∈ C0([0, T ], H−1(Ω)) is a solution of (48) if and only if for any k ≥ 1 and
any t ∈ [0, T ], we have

〈y(t), φk〉H−1×H1
0
−
〈
y0, e−λktφk

〉
H−1×H1

0

=

∫ t

0

∫
Ω

1ω(x)Vd(s, x)e−λk(t−s)φk(x)dxds−
∫ t

0

γ(1)Vb(s)e
−λk(t−s)∂xφk(1)ds,

where (λk, φk) are the eigenelements of the self-adjoint operator A as defined in the
introduction.

It is proved in [10] that for any Vb and Vd, such a solution exists and is unique.
Since we are interested in the controllability of such a system at time T , we will often
make use of the above formula specialized at time t = T

(49) 〈y(T ), φk〉H−1×H1
0
−
〈
y0, e−λkTφk

〉
H−1×H1

0

=

∫ T

0

∫
Ω

1ω(x)Vd(t, x)zk(t, x)dxdt−
∫ T

0

γ(1)Vb(t)∂xzk(t, 1)dt,

where we have defined zk by zk : (t, x) 7→ e−λk(T−t)φk(x) which is nothing but the
solution of the adjoint problem with final data φk

(50)


− ∂tzk(t, x) +Azk(t, x) = 0 in (0, T )× Ω,

zk(t, 0) = zk(t, 1) = 0 in (0, T ),

zk(T, x) = φk(x) in Ω.
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• Consider first the right-boundary null-control problem : we set Vd = 0, and we
are looking for a boundary control Vb ∈ L2(0, T ) such that the corresponding
solution y of (48) satisfies y(T ) = 0.
We write the decomposition of y0 in the basis (φk)k≥1 as follows y0 =∑
k≥1 y

0
kφk and from (49) we see that the problem amounts to find Vb such

that

(51) y0
ke
−λkT = γ(1)∂rφk

(∫ T

0

Vb(t)e
−λk(T−t)dt

)
,∀k ≥ 1.

The set of equations (51) indexed by k is called a moments problem. The
moments method consists in solving (51) using a biorthogonal family of the
real exponentials

(
e−λk(T−t))

k≥1
.

Let Λ = (λk)k≥1 be a sequence of positive numbers. A biorthogonal family of(
e−λk(T−t))

k≥1
is a set of functions in L2(0, T ) denoted by

(
qΛ
l

)
l≥1

verifying

(52)

∫ T

0

e−λk(T−t)qΛ
l (t)dt = δl,k, ∀l, k ≥ 1.

We can now solve, at least formally, the moment problem (51) and give a
possible expression of Vb

(53) Vb(t) :=
∑
k≥1

y0
ke
−λkT

γ(1)∂rφk
qΛ
k (t).

• Now, we study the distributed control problem : we set Vb = 0 and we look for
a control Vd such that the corresponding solution y of (48) satisfies y(T ) = 0.
Using again (49), this amounts to find Vd satisfying the following family of
equalities

(54) − y0
ke
−λkT =

∫ T

0

∫
ω

Vd(t, x)e−λk(T−t)φk(x)dxdt, ∀k ≥ 1.

Inspired by the boundary control case, we look for a suitable Vd in the fol-
lowing form

(55) Vd(t, x) =
∑
k≥1

αkq
Λ
k (t)φk(x),

where (αk)k≥1 is a sequence of real numbers to be determined.
Injecting (55) in (54) and using (52) we finally get the following formula for
the unknown coefficients

αk = − y0
ke
−λkT∫

ω
φ2
k(x)dx

.

Formally, the control problem is thus solved by defining

(56) Vd(t, x) :=
∑
k≥1

(
− y0

ke
−λkT

‖φk‖2L2(ω)

)
qΛ
k (t)φk(x).
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Remark 5.1. This strategy is not classic. In many papers (see [2], [3], [12])
when A is the Laplace operator, the authors rather look for a distributed control of the
form Vd(t, x) = u(t)f(x), where f is a well chosen profile function, supported in ω,
and satisfying some lower bounds for its generalized Fourier coefficients

∣∣∫
Ω
fφk dx

∣∣.
However, it is not straightforward to find such a f when A is a more general elliptic
operator as in (1), since we dot not have analytic formulas for the φk (and, a fortiori,
finding the equivalent of f in the discrete setting seems to be even more complicated).

Thus, the ansatz Vd(t, x) =
∑
k≥1 αkq

Λ
k (t)φk(x) we choose here is somehow more

convenient since it does not require to find such a function f . Notice that the family
(t, x) 7→ qΛ

k (t)φk(x)/‖φk‖2L2(ω) can be seen as a space-time biorthogonal family of

(t, x) 7→ e−(T−t)λkφk(x) in L2((0, T )× ω).
This form of distributed control has been used in [15] to prove exact controllability

of the 1d-wave equation.

To sum up, in order to justify the previous application of the moment method, we
must check that

1. Such a biorthogonal family (qΛ
k )k≥1 exists.

2. The formal series (53) (resp. (56)) that defines Vb (resp. Vd) converges. To
this end, we need
(a) to estimate the L2(0, T )-norms of qΛ

k , for all k ≥ 1,
(b) to give lower bounds on ‖φk‖L2(ω) and |∂rφk|, that appear at the de-

nominator in those formulas.
The lower bounds in the point 2b were stated in the assertions 2 and 3 of Theorem
1.1. We shall now tackle points 1 and 2a at the same time.

Problems of existence and bounds on the biorthogonal family have been studied
in [12] and [1] and we recall below some useful results.

First, we extend the definition of a biorthogonal family given above, in view of
controlling systems of coupled parabolic equations.

Definition 5.1. Let Σ := (σk)k≥1 be a sequence of positive real numbers. Let

T > 0 and m ∈ N. A biorthogonal family of
(
(t− T )ie−σk(T−t))k≥1

i∈J0,mK is a set of

functions in L2(0, T ) denoted by
(
qΣ
j,l

)l≥1

j∈J0,mK
satisfying

∫ T

0

(t− T )i exp(−σk(T − t))qΣ
j,l(t)dt = δk,lδi,j , ∀k, l ≥ 1, ∀i, j ∈ J0,mK.

Before stating an existence result and estimates for such biorthogonal families in
Theorem 5.1, we need the following definition (see [12, Theorem 1.1])

Definition 5.2 (class of sequences L(ρ,N )). Let ρ > 0 and let N : R+ → N.
We denote by L(ρ,N ) the class of all sequences of positive numbers Σ = (σk)k≥1 that
satisfy the conditions:

σk+1 − σk ≥ ρ, ∀k ≥ 1,

∞∑
k=N (ξ)

1

σk
≤ ξ, ∀ξ > 0.

Theorem 5.1. Let T > 0 and m ∈ N. Let ρ > 0 and N : R+ → N.
For any τ > 0, there exists K(τ, T, ρ,N ,m) > 0 such that for any sequence

Σ := (σk)k≥1 in the class L(ρ,N ), there exists a biorthogonal family (qΣ
j,l)

l≥1
j∈J0,mK in
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L2(0, T ) for
(
(t− T )ie−σk(T−t))k≥1

i∈J0,mK such that

‖qΣ
j,l‖L2(0,T ) ≤ Keτσl , ∀l ≥ 1,∀j ∈ J0,mK.

Remark 5.2. We emphasize that the upper bound Keτσl does not depend on the
choice of the particular sequence Σ in the class L(ρ,N ).

For m = 0, this result is proved in [12, Theorem 1.1] and for m ≥ 1 it is proved
in [1, Theorem 1.2]. In this last reference, the dependence of the bounds with respect
to the sequence Σ is not precised but a careful inspection of the proof shows that the
constants are actually uniform in the class L(ρ,N ) as in [12].

We can now completely justify the moments method applied to system (48) that
we described formally above. For the sake of completeness, we state the following
theorem in the more general case of a cascade system of d ≥ 1 parabolic equations.
We introduce a control vector B ∈ Rd and a coupling d×d matrix C defined as follows

B :=


1
0
...
0

 , C :=


0

1
. . .

. . .
. . .

1 0

 .

Let ω be a non empty open subset of Ω and T > 0. For any Y 0 ∈ (H−1(Ω))d,
Vb ∈ L2(0, T ), Vd ∈ L2((0, T )× Ω) the problem

(57)


∂tY +AY + CY = 1ωBVd(t, x) in (0, T )× Ω,

Y (t, 0) = 0, Y (t, 1) = BVb(t) in (0, T ),

Y (0, x) = Y 0(x) in Ω,

has a unique solution in C0([0, T ], (H−1(Ω))d). Observe that Y has d components
(and A acts component-by-component on Y ) but the controls Vb and Vd are scalar.

Theorem 5.2. Assume that (H0) holds. For any Y 0 ∈ (H−1(Ω))d, System (57)
is null controllable at time T with either a distributed control Vd ∈ L2((0, T )×Ω) (in
this case, we set Vb = 0) or a boundary control Vb ∈ L2(0, T ) (in this case, we set
Vd = 0).

Remark 5.3. Notice that when d = 1, system (57) is nothing but system (48).
Notice also that, as usual in the study of controllability properties of systems with

fewer controls than equations, not every equation is directly controlled. Indeed, the
control directly intervenes only in the evolution equation for the first component of
the solution. Thanks to the particular structure of the coupling matrix C, the second
component is indirectly controlled by means of the first component itself and so on.

Proof. As an example, we start by considering the case d = 1. The first assertion
of Theorem 1.1 as well as (2) ensure that Theorem 5.1 applies with m = 0. Choosing
for instance τ = T/2, and using the second and third assertions of Theorem 1.1, one
can easily check that the series (53) (resp. the series (56)) converges in L2(0, T ) (resp.
in L2((0, T )× Ω), which justifies the formal approach and proves the claim.

The same kind of arguments apply to the case d > 1. First, note that the
eigenvalues of the adjoint operator L := A + tC in (L2(Ω))d are the (λk)k≥1, as in
the case d = 1. They are geometrically simple and possess a d× d Jordan bloc. More
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precisely if we define, Φrk := φker for r ∈ J1, dK where (e1, . . . , ed) is the canonical
basis of Rd and Φ0

k = 0, then we have

LΦrk = AΦrk + tCΦrk = λkΦrk + Φr−1
k , ∀r ∈ J1, dK,

so that Φ1
k is an eigenfunction, and the Φrk, r ≥ 2 are generalized eigenfunctions.

With those notations we can explicitely compute the semi-group associated with
L for each initial data Φrk, as follows

e−sLΦrk =

r−1∑
l=0

(−s)l

l!
e−λksΦr−lk , ∀s ≥ 0.

• The right-boundary control problem consists in finding a control Vb ∈ L2(0, T )
such that ∀k ≥ 1, ∀r ∈ J1, dK,

〈
Y 0, e−TLΦrk

〉
H−1×H1

0
=

r−1∑
l=0

(
B, ∂xΦr−lk (1)

)
γ(1)

∫ T

0

Vb(t)
(t− T )l

l!
e−λk(T−t)dt,

where (·, ·) denotes the canonical inner product of RN . By definition of B
and Φr−1

k , we see that
(
B, ∂xΦr−lk (1)

)
= δl,r−1∂xφk(1), we are led to solve

the following moments problem: find Vb ∈ L2(0, T ) such that for any k ≥ 1
and r ∈ J1, dK〈

Y 0, e−TLΦrk
〉
H−1×H1

0
=
γ(1)∂rφk
(r − 1)!

∫ T

0

Vb(t)(t− T )r−1e−λk(T−t)dt.

The gap estimate in Theorem 1.1 (first assertion) and the inequality (2) ensure
that we can apply Theorem 5.1 with m = d − 1 and τ = T/2 (for instance)
and obtain a biorthogonal family whose norms are bounded by eλkT/2. Then,
we observe that

‖e−TLΦrk‖H1
0
≤ e−λkT

(
r−1∑
l=0

T l

l!

)
‖φk‖H1

0
≤ Ce−λkT

√
λk.

Finally, with the uniform lower bound on ∂rφk given in Theorem 1.1 we can
conlude that the following definition of Vb

(58) Vb(t) =
∑
k≥1

d∑
r=1

(r − 1)!

〈
−Y 0, e−TLΦrk

〉
H−1×H1

0

γ(1)∂rφk
qΛ
r−1,k(t),

is actually a series that converges in L2(0, T ) and which is a solution of our
boundary control problem.

• Considering now the distributed control problem, we look for a control Vd of
the following form

Vd(t, x) =
∑
k≥1

d∑
r=1

αk,rq
Λ
r−1,k(t)φk(x),

with the coefficients αk,r to be determined. By using formally this expression
in the weak formulation of the problem, we obtain

αk,r = (r − 1)!

〈
−Y 0, e−TLΦrk

〉
H−1×H1

0

‖φk‖2L2(ω)

, ∀k ≥ 1,∀r ∈ J1, dK.
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Still using the bounds on the biorthogonal family
(
qΛ
)k≥1

r∈J0,d−1K, the bound

on ‖e−TLΦrk‖H1
0

and the uniform lower bound on ‖φk‖L2(ω) given in Theorem
1.1, we obtain that the series

(59) Vd(t, x) =
∑
k≥1

d∑
r=1

(r − 1)!

〈
−Y 0, e−TLΦrk

〉
H−1×H1

0

‖φk‖2L2(ω)

qΛ
r−1,k(t)φk(x)

converges in L2((0, T )×Ω) and is solution to our distributed control problem.

5.2. Null controllability in the discrete setting. We now want to apply
this strategy to a discrete version of (57). For a given mesh, we consider the discrete
control problem

(Shd )

{
(Y h)′(t) +AhY h(t) + ChY h(t) = Bh(DhωV hd (t) + Bhr V hb (t)), for 0 < t ≤ T,
Y h(0) = Y 0,h ∈ (RN )d,

where Bh is the (Nd)×N matrix and Ch the (Nd)× (Nd) matrix given by

Bh :=


Ih

0h

...
0h

 , Ch :=


0h

Ih
. . .

. . .
. . .

Ih 0h

 ,

that approximate the control vector B and the coupling matrix C. Here we still use
the notation Ah for the component-by-component discrete elliptic operator.

The solutions of this system satisfy the discrete analogue of (49) that is: ∀k ∈
J1, NK,∀r ∈ J1, dK,

(60)
〈
Y h(T ),Φr,hk

〉
L2(Ωh)

−
〈
Y 0,h, e−TL

h

Φr,hk

〉
L2(Ωh)

=

∫ T

0

〈
BhDhωV hd (t), e−(T−t)LhΦr,hk

〉
L2(Ωh)

dt

−
∫ T

0

V hb (t)γN+1/2∂rφ
h
k

(t− T )r−1

(r − 1)!
exp

(
−λhk(T − t)

)
dt,

where Dhω is defined in (7). Here, Φr,hk is a column vector of size dN and (Φr,hk )i =
(φhk)i−(r−1)N for i ∈ J1 + (r − 1)N, rNK and 0 otherwise.

We have used here that the semi-group associated with the adjoint operator Lh :=
Ah + tCh satisfies

e−sL
h

Φr,hk =

r−1∑
l=0

(−s)l

l!
e−λ

h
ksΦr−l,hk .

In the discrete setting, we not only want to control the discrete system for any
mesh but also to have uniform bounds on them, with respect to h, in order to be
able to conclude that, at least in a weak sense, the discrete controls will eventually
converge towards a control of the continuous problem.

Therefore, in this setting, for a given family of initial data (Y 0,h)h, the null-control
problem consists in finding distributed controls (V hd )h>0 (resp. boundary controls
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(V hb )h>0) such that the corresponding solution Y h with V hb = 0 (resp. V hd = 0)
satisfies

(61) Y h(T ) = 0,∀h > 0,

and such that, for some C > 0 depending only on the data (γ, q, ω, β and so on),
(V hd )h>0 and (V hb )h>0 satisfy

(62) ‖V hd ‖L2(ΩTh ) ≤ C‖Y 0,h‖L2(Ωh), and ‖V hb ‖L2(0,T ) ≤ C‖Y 0,h‖L2(Ωh), ∀h > 0.

In the discrete case, we will refer to uniform null controllability as the combination
of condition (61) and (62). We start by considering the setting (S3), which is the
simplest one.

Theorem 5.3. Let d ∈ N∗ and T > 0. Consider a uniform mesh and suppose
that γ is a constant function, while q is any continuous function. Then, the discrete
cascade system (Shd ) is uniformly null controllable at time T either with a distributed
control, or with a boundary control.

Proof. Let us introduce the sequence

Λ̃h :=

{
λhk for k ∈ J1, NK,

λhN + 4γk2 for k ≥ N + 1.

Notice that (Λ̃h)k ≥ 4γk2 − ‖q‖∞ for any k ≥ 1 (see Lemma 3.3 and Remark 1.3).
First, we prove that there exists ρ > 0 and N , an integer-valued function, such that
Λ̃h ∈ L(ρ,N ) for any h > 0. Let N : R+ → N be a function satisfying

(63)
∑

k≥N (η)

1

4γk2 − ‖q‖∞
≤ η, ∀η > 0.

According to Corollary 3.1 we know that there exists κ > 0 such that, for any h > 0,
we have

(64) λhk+1 − λhk ≥ κ, ∀k ∈ J1, N − 1K.

One can check that

(65) Λ̃h ∈ L(min(κ, 4γ),N ), ∀h > 0.

Thus, we can apply Theorem 5.1 which states that given any τ ∈ (0, T ), there exists a

K > 0, such that for and any h > 0, there exists a biorthogonal family (qΛ̃h

r,k)
k∈J1,NK
r∈J0,d−1K

satisfying

(66) ‖qΛ̃h

r,k‖L2(0,T ) ≤ Keτλ
h
k , ∀h > 0, ∀k ∈ J1, NK, ∀r ∈ J0, d− 1K.

It is fundamental to notice that the upper bound in (66) is valid for any h > 0 even
though the sequence of eigenvalues depends on h, thanks to (65), see also Remark 5.2.

From equation (60) and adapting the strategy of Section 5.1, we find the following
expressions

(67) V hb (t) =

N∑
k=1

d∑
r=1

(r − 1)!
〈Y 0,h, e−TL

h

Φh,rk 〉L2(Ωh)

γ∂rφhk
qΛ̃h

r−1,k(t), and V hd (t) = 0,
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for the boundary control case and

(68) V hd (t) =

N∑
k=1

d∑
r=1

(r − 1)!
−〈Y 0,h, e−TL

h

Φh,rk 〉L2(Ωh)

‖φhk‖2L2(ωh)

qΛ̃h

r−1,k(t)φhk , and V hb (t) = 0.

for the distributed control case.
We deal now with finite sums and there is no series convergence problem as soon

as ∂rφ
h
k 6= 0 (this is alway true) and ‖φhk‖L2(ωh) 6= 0 (which is true as soon as ω

contains at least two different points of the mesh).
However, it remains to check that condition (62) is satisfied. According to the

lower bounds in Corollary 3.1 and to (66), we find that for any h > 0, the distributed
control in (68) satisfies

‖V hd ‖L2(ΩTh ) ≤ C‖Y 0,h‖L2(Ωh)

N∑
k=1

λhke
−(T−τ)λhk ≤ C‖Y 0,h‖L2(Ωh)

∑
k≥1

k2e−(T−τ)4γk2

,

and thus,

‖V hd ‖L2(ΩTh ) ≤ C‖Y 0,h‖L2(Ωh).

The same computations hold for (V hb )h>0 in (67).

Remark 5.4. Notice that, for the problem of control under consideration, we did
not need so much precision on the lower bounds of Corollary 3.1. Indeed, controls
(V hb )h>0 and (V hd )h>0 satisfy condition (62) as soon as the sums (67) and (68) are
bounded uniformly in h. Thus, for this purpose, results of Theorem 3.1 would have
been enough.

5.3. φ(h)-null controllability. As already mentioned in the last paragraph of
Section 1.3.1 and observed in numerical simulations of Section 4, the gap property (4)
may not be satisfied when the diffusion coefficient is not constant or when the mesh is
not uniform. Therefore, in these latter cases, we no longer look for controls that lead
to (61) and instead, we consider a weaker definition of controllability, namely, we now
investigate the φ(h)-null controllability problem (see Definition 1.1) as defined in [6].

Remark 5.5. Note that the property ‖Y h(T )‖2L2(Ωh) ≤ Cφ(h)‖Y 0,h‖2L2(Ωh) en-

sures that Y h(T ) → 0 as h → 0 if the family of discrete initial data are bounded.
Thus, the φ(h)-null controllability problem really aims at approaching null-controls in
the limit h→ 0 and not approximate controls.

Let us first state a lemma on which the proofs of Theorem 5.4 and Theorem 5.5 both
rely.

Lemma 5.1. Let t0 ∈ (0, T ), K ≥ 1, and β > 0. There exists a C(q, γ, t0, β) > 0
such that

• for any mesh satisfying Θh ≤ β and N > K
• for any V hd ∈ L2(0, T,RN ) and V hb ∈ L2(0, T ) that vanish on (t0, T ) for which

the associated solution Y h of (Shd ) satisfies

(69)
〈

Φr,hk , Y h(t0)
〉
L2(Ωh)

= 0, ∀k ∈ J1,KK, ∀r ∈ J1, dK,

we have

‖Y h(T )‖L2(Ωh) ≤ Ce−(T−t0)λhK+1

(
‖Y 0,h‖L2(Ωh) +

1

h3/2
‖V hb ‖L2(0,T ) + ‖V hd ‖L2(ΩTh )

)
.
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Proof. Since the family (Φr,hk )
k∈J1,NK
r∈J1,dK , is an orthonormal basis of RNd, we have

‖Y h(t0)‖2L2(Ωh) =

N∑
k=1

d∑
r=1

〈
Y h(t0),Φr,hk

〉2

L2(Ωh)
.

Now, using (60) with T replaced by t0 we find that

‖Y h(t0)‖2L2(Ωh) ≤ 3

N∑
k=1

d∑
r=1

∣∣∣∣∣∣
〈
Y 0,h,

r−1∑
l=0

Φr−l,hk

(−t0)l

l!
exp

(
−λhkt0

)〉
L2(Ωh)

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∫ t0

0

〈
V hd (t), tDhωtBh

r−1∑
l=0

Φr−l,hk

(t− t0)l

l!
exp

(
−λhk(t0 − t)

)〉
L2(Ωh)

dt

∣∣∣∣∣∣
2

+

(
Θh‖γ‖∞

h

‖φhk‖L∞
(r − 1)!

)2 ∣∣∣∣∫ t0

0

V hb (t)(t− t0)r−1 exp
(
−λhk(t0 − t)

)
dt

∣∣∣∣2
Thus,

‖Y h(t0)‖2L2(Ωh) ≤ C(t0, β, γ)

N∑
k=1

d∑
r=1

∣∣∣∣〈Y 0,h,Φr,hk

〉
L2(Ωh)

∣∣∣∣2
+

∣∣∣∣∫ t0

0

〈
V hd (t), tDωΦ1,h

k exp
(
−λhk(t0 − t)

)〉
L2(Ωh)

dt

∣∣∣∣2
+

1

h3

∣∣∣∣∫ t0

0

V hb (t) exp
(
−λhk(t0 − t)

)
dt

∣∣∣∣2 .
In the last inequality we used that ‖φhk‖2L∞ ≤

Θh
h ‖φ

h
k‖2L2(Ωh) ≤

β
h .

‖Y h(t0)‖2L2(Ωh) ≤ C

[
‖Y 0,h‖2L2(Ωh) + ‖V hd ‖2L2(ΩTh )

N∑
k=1

1

λhk
+

1

h3
‖V hb ‖2L2(0,T )

N∑
k=1

1

λhk

]
.

Finally, taking the square root and using the lower bounds for λhk given in Lemma
3.3, we conclude that

(70) ‖Y h(t0)‖L2(Ωh) ≤ C
[
‖Y 0,h‖L2(Ωh) + ‖V hd ‖L2(ΩTh ) +

1

h3/2
‖V hb ‖L2(0,T )

]
.

Now, we take advantage of the assumption (69) that implies the exponential decay

of coefficients
〈

Φr,hk , Y h(t)
〉
L2(Ωh)

for t ≥ t0. Indeed, since both souce terms V hd and

V hb are null after time t0, the solution at time T writes,

Y h(T ) =

d∑
r=1

N∑
k=K+1

〈
Φr,hk , Y h (t0)

〉
L2(Ωh)

exp
(
−λhk(T − t0)

)
Φr,hk .

Thus,
‖Y h(T )‖L2(Ωh) ≤ exp

(
−λhK+1(T − t0)

)
‖Y h(t0)‖L2(Ωh),

which gives the claim with estimate (70).
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Now we can state the main theorem of this section which applies in setting (S2).

Theorem 5.4. Let T > 0 and suppose that the mesh is uniform and that q and
γ satisfy hypothesis (H0). Let any function φ : R∗+ → R∗+ such that

(71) lim inf
h→0

[
h2 log(φ(h))

]
> −8γminT.

Then, system (Shd ) is φ(h)-null controllable in time T .

Proof. The proof follows the same lines as the ones of Theorem 5.3 except that
we only set to 0 a given portion of the Fourier modes of the solution.

From (71) we can find t0 ∈ (0, T ) and ε ∈ (0, 1) (depending only on φ) such that

(72) lim inf
h→0

[
h2 log(φ(h))

]
> −8γmin(T − t0)(1− ε).

Let khmax,ε as in (29). We define Λ̃hε as follows

Λ̃hε :=

{
λhk for k ∈ J1, khmax,εK,

λhkhmax,ε + 4γmink
2 for k ≥ khmax,ε + 1.

Thanks to the gap estimate in Theorem 3.2, there exists a κε > 0 such that

Λ̃hε ∈ L(κε,N ), for any h, where N is defined by (63).

We apply Theorem 5.1 with T replaced by t0 and τ = t0/2, in such a way that the
biorthogonal family we obtain in L2(0, t0) satisfies

‖qΛ̃hε
j,l ‖L2(0,t0) ≤ Kt0,εe

λhl t0/2, ∀l ∈ J1, khmax,εK,∀j ∈ J0, d− 1K.

We define now the following controls on (0, t0)

(73) V hb (t) =

khmax,ε∑
k=1

d∑
r=1

(r − 1)!
〈Y 0,h, e−t0L

h

Φh,rk 〉L2(Ωh)

γ(1)∂rφhk
q

Λ̃hε
r−1,k(t), and V hd (t) = 0

in the boundary control case and

(74) V hd (t) =

khmax,ε∑
k=1

d∑
r=1

(r−1)!
−〈Y 0,h, e−t0L

h

Φh,rk 〉L2(Ωh)

‖φhk‖2L2(ωh)

q
Λ̃hε
r−1,k(t)φhk , and V hb (t) = 0,

in the distributed control case. Using the above estimates on the biorthogonal family
and the lower bounds on ∂rφ

h
k and ‖φhk‖L2(ωh) given in Theorem 3.2, we obtain

(75)

{
‖V hd ‖L2(Ω

t0
h )
≤Cε,t0‖Y 0,h‖L2(Ωh),

‖V hb ‖L2(0,t0) ≤Cε,t0‖Y 0,h‖L2(Ωh),

and moreover, by construction, we have〈
Φr,hk , Y h(t0)

〉
L2(Ωh)

= 0, ∀k ∈ J1, khmax,εK, ∀r ∈ J1, dK.
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Therefore, we can use Lemma 5.1 with K = khmax,ε to conlude that

‖Y h(T )‖L2(Ωh) ≤Ct0,ε‖Y 0,h‖L2(Ωh)

(
1 +

1

h3/2

)
e
−(T−t0)λh

khmax,ε+1

≤Ct0,ε‖Y 0,h‖L2(Ωh)
1

h3/2
e−(T−t0)(1−ε) 4γmin

h2 .

By (72), for h small enough, we conclude that

‖Y h(T )‖2L2(Ωh) ≤ Ct0,ε‖Y
0,h‖2L2(Ωh)φ(h).

With the bounds (75), the claim follows.

We can now state an analogous theorem in the setting (S1).

Theorem 5.5. Let T > 0. Suppose that γ and q satisfy (H2). For any β > 0,
there exists α(q, γ, β) > 0, such that for any function φ : R∗+ → R∗+ satisfying

(76) lim inf
h→0

[
h2/5 log(φ(h))

]
> −αT,

and any mesh family such that Θh ≤ β, the system (Shd ) is φ(h)-null controllable at
time T .

Proof. This proof is similar to the proof of the previous theorem and the details
are left to the reader. However, we precise below their main differences.

Let α > 0, as in the last estimate of Theorem 3.1 and define

Λ̃h :=

{
λhk for k ∈ J1, αN2/5 − 1K,

λhk + 4γmink
2 for k ≥ αN2/5.

Thanks to the gap estimate of Theorem 3.1, there exists κ > 0 such that

Λ̃h ∈ L(κ,N ), for any h.

By constructing the same kind of controls as before, we get〈
Φr,hk , Y h(t0)

〉
L2(Ωh)

= 0, ∀k ∈ J1, αN2/5K, ∀r ∈ J1, dK,

which, using Lemma 5.1 with K = αN2/5, leads to

‖Y h(T )‖L2(Ωh) ≤ Ct0‖Y 0,h‖L2(Ωh)
1

h3/2
exp

(
− (T − t0)α

h2/5

)
.

and the claim follows.

Remark 5.6. The notion of φ(h)-null controllability has been introduced here to
remedy the fact that the gap property does not hold for the entire spectrum in the
general case. Note that if one is able to prove, on a particular choice of γ and q, that
the gap property is valid for the whole spectrum, then the estimates of Section 3 allow
to conclude that uniform null controllability holds.
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6. Remarks and further results.
1. In [17] the authors consider the problem of null-controllability at the boundary

for the semi-discretized in space linear beam equation with hinged boundary
conditions and constant diffusion coefficient. They discretize the operator
∂xxxx with finite differences in 1D on a uniform mesh. The equation writes:{

(Y h)′′(t) + (Ah)2Y h(t) = Bhr V hb (t), t ∈ (0, T )

Y h(0) = Y h,0, (Y h)′(0) = Y h,1,

where Y h,0 and Y h,1 are vectors in RN . The corresponding adjoint system
with final datum ZhT ∈ R2N writes{

(Zh)′(t) + LhZh(t) = 0

Zh(T ) = ZhT

where Lh =

(
0 −Ih

(Ah)2 0

)
. The authors show, via the moments method,

that uniform null controllability holds for this equation for some initial data
whose high frequencies have been filtered out. As for parabolic problems, their
proof makes use of explicit computations on the eigenelements (µhk , ψ

h
k )1≤|k|≤N

of the operator Lh.
Using the discrete spectral estimates obtained in Section 3 of the present
paper, we think that one can adapt the ideas of [17] to obtain similar results
for more general second order elliptic operator Ah and, more importantly,
non uniform grids.

2. We give here some additional information about the theorical results men-
tionned in Section 4, test case 4, where the mesh is uniform, q = 0 and γ is
piecewise constant and takes its largest value on the right side of the domain :
O :=]0.4, 1[. First, note that the equationAhφhk = λhkφ

h
k defines a linear recur-

rence relation with constant coefficients for the indices i such that xi ∈ Ω\O,
since γ is constant in this region. Using the homogenous Dirichlet condition
at x = 0, we can prove by explicit computations that Ihl (N) ≤ exp(−C1

h ) and

Ih1 (N) ≤ exp(−C1

h ), where C1 depends only on γ. Next, we check that the
computations done in Theorem 3.2 and Proposition 3.2 are still valid locally
where γ is constant and in particular in O. Doing this, we can show that
Ihr (N) ≥ C2 and Ih2 (N) ≥ C2|ω2|, where C2 only depends on γ.

3. In Remark 5.4 we stressed that, for the distributed control problem on a uni-
form mesh, the exponentially small lower bound of Theorem 3.1 was enough
to give a uniform bound on V hd . In [7, Th 6.1], the authors show that a par-
tial discrete Lebeau-Robbiano inequality holds for a discretization of a second
order elliptic operator of the form A = −∂x(γ∂x·), on regular families of non-
uniform meshes (as the ones considered in Remark 1.5). Thus, considering a
uniform discretization, they obtain that there exist C > 0 and ε > 0, both
independant of h, such that for any eigenvalue λhk satisfying λhk ≤ ε/h2, we

have ‖φhk‖L2(ωh) ≥ 1
C exp(−C

√
λhk). This is the same lower bound as the one

of Theorem 3.1, but only for a fraction of the spectrum, and only for regular
grids and coefficients. Note also that the Lebeau-Robbiano inequalities do
not give any information on the normal derivatives of the eigenfunctions.
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