Controllability of a semi discretized parabolic equation via the moment method.

D. Allonsius, F. Boyer and M. Morancey.

Institut de Mathématiques de Marseille.

Tuesday 31st May 2016

Introduction.

WHAT WE ARE INTERESTED IN

Discrete control theory on a semi-discretized parabolic equation on $\Omega=(0,1)$. \mathcal{A}^h : discretization of an elliptic operator (example: $\mathcal{A}=-\Delta$).

$$\begin{cases} \partial_t y^h(t) + \mathcal{A}^h y^h(t) = \frac{\mathbf{V}_{\mathsf{d}}^h(t) \mathbf{1}_{\pmb{\omega}}, \text{ on } (0,T), \ (\pmb{\omega} \subset \Omega) \,, \\ y^h(0) = y^{h,0} \in \mathbb{R}^N, \\ y^h_0(t) = 0, \text{ on } (0,T), \\ y^h_{N+1}(t) = V^h_{\mathsf{b}}(t), \text{ on } (0,T), \end{cases}$$

Find $V_{\mathsf{d}}^h \in L^2(0,T;\mathbb{R}^N)$ OR $V_{\mathsf{b}}^h \in L^2(0,T;\mathbb{R})$:

- $y^h(T) = 0$
- $V_{\rm d}^h$, $V_{\rm b}^h$ uniformly bounded w.r.t. h.

Introduction.

WHAT WE ARE INTERESTED IN

Discrete control theory on a semi-discretized parabolic equation on $\Omega = (0,1)$. \mathcal{A}^h : discretization of an elliptic operator (example: $\mathcal{A} = -\Delta$).

$$\begin{cases} \partial_t y^h(t) + \mathcal{A}^h y^h(t) = \frac{\mathbf{V}_{\mathrm{d}}^h(t) \mathbf{1}_{\pmb{\omega}}, \text{ on } (0, T), (\pmb{\omega} \subset \Omega), \\ y^h(0) = y^{h,0} \in \mathbb{R}^N, \\ y^h_0(t) = 0, \text{ on } (0, T), \\ y^h_{N+1}(t) = \mathbf{V}_{\mathrm{b}}^h(t), \text{ on } (0, T), \end{cases}$$

WHAT WAS DONE BEFORE

1998, López and Zuazua

- semi-discretized heat equation : $A^h = -\Delta^h$,
- uniform mesh,
- boundary null-control problem : $V_{\rm b}^h$,
- in space dimension $1: \Omega = (0,1)$.

Introduction.

WHAT WE ARE INTERESTED IN

Discrete control theory on a semi-discretized parabolic equation on $\Omega=(0,1)$. \mathcal{A}^h : discretization of an elliptic operator (example: $\mathcal{A}=-\Delta$).

$$\begin{cases} \partial_t y^h(t) + \mathcal{A}^h y^h(t) = \textcolor{red}{V_{\rm d}^h(t)} \mathbf{1}_{\pmb{\omega}}, \text{ on } (0,T), \, (\pmb{\omega} \subset \Omega) \,, \\ y^h(0) = y^{h,0} \in \mathbb{R}^N, \\ y^h_0(t) = 0, \text{ on } (0,T), \\ y^h_{N+1}(t) = \textcolor{blue}{V_{\rm b}^h(t)}, \text{ on } (0,T), \end{cases}$$

WHAT WAS DONE BEFORE

2010, Boyer, Hubert and Le Rousseau

- semi-discretized parabolic equation : $\mathcal{A}^h = (-\partial_x (\gamma \partial_x \cdot))^h$,
- distributed control problem : V_d^h , (relaxed control)
- in space dimension ≥ 1 ,
- discrete Carleman estimates.

WHAT WE DO

Extend their work to:

- Cascade system of parabolic equations : $\begin{pmatrix} \mathcal{A}^h & 0 \\ 1 & \mathcal{A}^h \end{pmatrix}$ with $\begin{pmatrix} \text{control} \\ 0 \end{pmatrix}$
- ullet boundary and distributed controls : $V_{
 m d}^h$, $V_{
 m b}^h$,
- BUT: in space dimension 1.

Outline.

1 The moment method on a semi-discretized parabolic equation.

2 Discrete spectral properties.

3 Application in control theory

Outline.

The moment method on a semi-discretized parabolic equation.

Discrete spectral properties

3 Application in control theory

DISCRETE PROBLEM

$$(\mathbf{P}^h) \begin{cases} (y^h)'(t) + \mathcal{A}^h y^h(t) = \mathbf{0}, \text{ on } (0,T), \\ y^h(0) = y^{h,0} \in \mathbb{R}^N \\ y^h_0(t) = 0, \text{ on } (0,T), \\ y^h_{N+1}(t) = 0, \text{ on } (0,T). \end{cases}$$

ELLIPTIC OPERATOR.

•
$$\mathcal{A}^h := \left(-\frac{\partial}{\partial x} \left(\gamma \frac{\partial}{\partial x} \cdot\right) + q\right)^h$$
,

$$\bullet \ (\mathcal{A}^h y^h)_j = - \tfrac{1}{h} \left(\gamma_{j+1/2} \tfrac{y^h_{j+1}(t) - y^h_j(t)}{h} - \gamma_{j-1/2} \tfrac{y^h_j(t) - y^h_{j-1}(t)}{h} \right) + q_j y^h_j(t)$$

• Denote by $(\Lambda^h:=(\lambda_k^h)_{k=1}^N,(\phi_k^h)_{k=1}^N)$ the eigenelements of $\mathcal{A}^h,\,\|\phi_k^h\|_h=1.$

- $q \in C^0(\Omega)$,
- $\gamma \in C^2(\Omega), \ \gamma \geq \gamma_{min} > 0,$
- $V_{\rm b} \in L^2(0,T;\mathbb{R})$.

DISCRETE PROBLEM

$$(\mathbf{P}^h) \begin{cases} (y^h)'(t) + \mathcal{A}^h y^h(t) = \mathbf{0}, \text{ on } (0, T), \\ y^h(0) = y^{h,0} \in \mathbb{R}^N \\ y^h_0(t) = 0, \text{ on } (0, T), \\ y^h_{N+1}(t) = 0, \text{ on } (0, T). \end{cases}$$

ELLIPTIC OPERATOR.

•
$$\mathcal{A}^h := \left(-\frac{\partial}{\partial x} \left(\gamma \frac{\partial}{\partial x} \cdot\right) + q\right)^h$$
,

$$\bullet \ (\mathcal{A}^h y^h)_N = - \tfrac{1}{h} \left(\gamma_{N+1/2} \tfrac{0 - y_N^h(t)}{h} - \gamma_{N-1/2} \tfrac{y_N^h(t) - y_{N-1}^h(t)}{h} \right) + q_N y_N^h(t)$$

• Denote by $(\Lambda^h := (\lambda_k^h)_{k=1}^N, (\phi_k^h)_{k=1}^N)$ the eigenelements of \mathcal{A}^h , $\|\phi_k^h\|_h = 1$.

- $q \in C^0(\Omega)$,
- $\gamma \in C^2(\Omega), \ \gamma \geq \gamma_{min} > 0,$
- $V_{\rm b} \in L^2(0,T;\mathbb{R})$.

DISCRETE PROBLEM

$$(\mathbf{P}^h) \begin{cases} (y^h)'(t) + \mathcal{A}^h y^h(t) = \mathbf{0}, \text{ on } (0, T), \\ y^h(0) = y^{h,0} \in \mathbb{R}^N \\ y^h_0(t) = 0, \text{ on } (0, T), \\ y^h_{N+1}(t) = V_b(t) \in L^2(0, T; \mathbb{R}), \text{ on } (0, T). \end{cases}$$

ELLIPTIC OPERATOR

•
$$A^h := \left(-\frac{\partial}{\partial x}\left(\gamma\frac{\partial}{\partial x}\cdot\right) + q\right)^h$$
,

$$\bullet \ (\mathcal{A}^h y^h)_N = -\tfrac{1}{h} \left(\gamma_{N+1/2} \tfrac{0 - y_N^h(t)}{h} - \gamma_{N-1/2} \tfrac{y_N^h(t) - y_{N-1}^h(t)}{h} \right) + q_N y_N^h(t)$$

• Denote by $(\Lambda^h:=(\lambda_k^h)_{k=1}^N,(\phi_k^h)_{k=1}^N)$ the eigenelements of $\mathcal{A}^h,\,\|\phi_k^h\|_h=1.$

- $q \in C^0(\Omega)$,
- $\gamma \in C^2(\Omega), \ \gamma \ge \gamma_{min} > 0$,
- $V_{\rm b} \in L^2(0,T;\mathbb{R})$.

DISCRETE PROBLEM

$$(\mathbf{P}^h) \begin{cases} (y^h)'(t) + \mathcal{A}^h y^h(t) = \mathbf{0} + \gamma_{N+1/2} \frac{V_b^h(t)}{h^2} \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}, \text{ on } (0,T), \\ y^h(0) = y^{h,0} \in \mathbb{R}^N \\ y^h_0(t) = 0, \text{ on } (0,T), \\ y^h_{N+1}(t) = V_b(t) \in L^2(0,T;\mathbb{R}), \text{ on } (0,T). \end{cases}$$

ELLIPTIC OPERATOR

$$\bullet \ \mathcal{A}^h := \left(- \tfrac{\partial}{\partial x} \left(\gamma \tfrac{\partial}{\partial x} \cdot \right) + q \right)^h,$$

$$\bullet \ (\mathcal{A}^h y^h)_N = -\frac{1}{h} \left(\gamma_{N+1/2} \frac{0 - y_N^h(t)}{h} - \gamma_{N-1/2} \frac{y_N^h(t) - y_{N-1}^h(t)}{h} \right) + q_N y_N^h(t)$$

• Denote by $(\Lambda^h := (\lambda_k^h)_{k=1}^N, (\phi_k^h)_{k=1}^N)$ the eigenelements of \mathcal{A}^h , $\|\phi_k^h\|_h = 1$.

DISCRETE PROBLEM

$$(\mathbf{P}^h) \left\{ \begin{aligned} &(y^h)'(t) + \mathcal{A}^h y^h(t) = \textcolor{red}{\mathbf{0}} + \gamma_{N+1/2} \frac{V_b^h(t)}{h^2} \mathbf{e_N}, \text{ on } (0,T), \\ &y^h(0) = y^{h,0} \in \mathbb{R}^N \\ &y_0^h(t) = 0, \text{ on } (0,T), \\ &y_{N+1}^h(t) = V_{\mathbf{b}}(t) \in L^2(0,T;\mathbb{R}), \text{ on } (0,T). \end{aligned} \right.$$

ELLIPTIC OPERATOR

•
$$\mathcal{A}^h := \left(-\frac{\partial}{\partial x}\left(\gamma\frac{\partial}{\partial x}\cdot\right) + q\right)^h$$

$$\bullet \ (\mathcal{A}^h y^h)_j = -\tfrac{1}{h} \left(\gamma_{j+1/2} \tfrac{y^h_{j+1}(t) - y^h_j(t)}{h} - \gamma_{j-1/2} \tfrac{y^h_j(t) - y^h_{j-1}(t)}{h} \right) + q_j y^h_j(t)$$

• Denote by $(\Lambda^h := (\lambda_k^h)_{k=1}^N, (\phi_k^h)_{k=1}^N)$ the eigenelements of \mathcal{A}^h , $\|\phi_k^h\|_h = 1$.

- $q \in C^0(\Omega)$,
- $\gamma \in C^2(\Omega), \ \gamma > \gamma_{min} > 0$
- $V_{\rm b} \in L^2(0,T;\mathbb{R})$.

The moment method, part 1/3: the moment problem

PROPERTY OF THE SOLUTION

$$\bullet \int_0^T \left(e^{-\lambda_k^h(T-t)} \phi_k^h, \left[(y^h)'(t) + \mathcal{A}^h y^h(t) = \mathbf{0} + \gamma_{N+1/2} \frac{V_b^h(t)}{h^2} \mathbf{e_N} \right] \right) \mathrm{d}t,$$

• Integrate by parts,

$$\left(y^h(T), \phi_k^h \right) - \left(y_0^h, e^{-\lambda_k^h T} \phi_k^h \right) = -\gamma_{N+1/2} \left(\frac{0 - (\phi_k^h)_N}{h} \right) \int_0^T e^{-\lambda_k^h (T-t)} V_{\mathbf{b}}^h(t) dt$$

$$y^h(T) = 0$$

$$\updownarrow$$

$$\forall k \in \{1, \dots N\}, -\left(y_0^h, e^{-\lambda_k^h T} \phi_k^h\right) = -\gamma_{N+1/2} \left(\frac{0 - (\phi_k^h)_N}{h}\right) \int_0^T e^{-\lambda_k^h (T-t)} V_b^h(t) dt$$

MOMENT PROBLEM

Find $V_{\rm d}^h$ and $V_{\rm b}^h$, uniformly bounded in h, such that :

$$\forall k \in \{1, \dots N\}, -\left(y_0^h, e^{-\lambda_k^h T} \phi_k^h\right) = \begin{cases} -\gamma_{N+1/2} \frac{0 - (\phi_k^h)_N}{h} \int_0^T e^{-\lambda_k^h (T-t)} \underbrace{V_{\mathbf{b}}^h (t)}_{\mathbf{b}} \mathrm{d}t \\ \int_0^T e^{-\lambda_k^h (T-t)} \underbrace{(V_{\mathbf{d}}^h (t), \mathbf{1}_\omega \phi_k^h)}_{\in \mathbb{R}^N} \mathrm{d}t \end{cases}$$

The moment method, part 2/3: formal solution

Definition: Biorthogonal family

Let $\Sigma := (\sigma_k)_{k \ge 1}$ be a sequence of positive real numbers.

Biorthogonal family for Σ , $(q_i^{\Sigma})_{j\geq 1}$:

$$\forall k, j \geq 1, q_j^{\Sigma} \in L^2(0, T), \quad \int_0^T e^{-\sigma_k(T-t)} q_j^{\Sigma}(t) dt = \delta_{k,j}.$$

Recall the problem:

$$(\Lambda^h := (\lambda^h_k)_{k \geq 1} : \text{eigenvalues of } \mathcal{A}^h)$$

$$-\left(y_0^h, e^{-\lambda_k^h T} \phi_k^h\right) = \begin{cases} \int_0^T e^{-\lambda_k^h (T-t)} \left(V_{\mathrm{d}}^h(t), \mathbf{1}_\omega \phi_k^h\right) \mathrm{d}t \\ \\ -\gamma_{N+1/2} \left(\frac{0-(\phi_k^h)_N}{h}\right) \int_0^T e^{-\lambda_k^h (T-t)} V_{\mathrm{b}}^h(t) \mathrm{d}t \end{cases}$$

POSSIBLE EXPRESSIONS FOR THE CONTROLS

$$\begin{split} V_{\mathrm{d}}^h(t) &= \sum_{j=1}^N \frac{-\left(y^{h,0}, e^{-\lambda_j^h T} \phi_j^h\right)}{\|\mathbf{1}_\omega \phi_j^h\|_h^2} \phi_j^h q_j^{\Lambda^h}(t), \\ V_{\mathrm{b}}^h(t) &= \sum_{j=1}^N \frac{\left(y^{h,0}, e^{-\lambda_j^h T} \phi_j^h\right)}{\gamma_{N+1/2} \left(\frac{0-\phi_{j,N}^h}{h}\right)} q_j^{\Lambda^h}(t). \end{split}$$

The moment method, part 3/3: justifications

IT REMAINS TO PROVE

- Uniform bounds on $V_{\rm b}^h$ and $V_{\rm d}^h \Leftarrow \left\| \| \mathbf{1}_{\omega} \phi_j^h \|_h^2 \ge ?$ and $\left(\frac{0 \phi_{j,N}^h}{h} \right) \ge ?$
- \bullet Bounds/existence of $({q_j^\Lambda}^h)_{j\geq 1}$ for all h>0

POSSIBLE EXPRESSIONS FOR THE CONTROLS

$$V_{\mathrm{d}}^h(t) = \sum_{j=1}^N \frac{-\left(y^{h,0}, e^{-\lambda_j^h T} \phi_j^h\right)}{\|\mathbf{1}_\omega \phi_j^h\|_h^2} \phi_j^h q_j^{\Lambda^h}(t),$$

$$V_{\mathrm{b}}^h(t) = \sum_{j=1}^N \frac{\left(y^{h,0}, e^{-\lambda_j^h T} \phi_j^h\right)}{\gamma_{N+1/2} \left(\frac{0-\phi_{j,N}^h}{h}\right)} q_j^{\Lambda^h}(t).$$

The moment method, part 3/3: justifications

IT REMAINS TO PROVE

- Uniform bounds on $V_{\rm b}^h$ and $V_{\rm d}^h \Leftarrow \left\| \|\mathbf{1}_{\omega}\phi_j^h\|_h^2 \geq ?$ and $\left(\frac{0 \phi_{j,N}^h}{h} \right) \geq ?$
- $\bullet \ \ \text{Bounds/existence of} \ (q_j^{\Lambda^h})_{j\geq 1} \ \text{for all} \ h>0 \ \Leftarrow \boxed{\text{find} \ \rho,\, \mathcal{N}: \forall h>0,\, \Lambda^h\in\mathcal{L}(\rho,\mathcal{N})}$

Definition : set of sequences $\mathcal{L}(\rho, \mathcal{N})$

Let $\rho > 0$ and $\mathcal{N} : \mathbb{R}^+ \to \mathbb{N}$.

Denote by $\mathcal{L}(\rho, \mathcal{N})$ the set of sequences $\Sigma = (\sigma_k)_{k \geq 1}$ such that :

- $\forall k \ge 1, \ \sigma_{k+1} \sigma_k \ge \rho,$
- $\forall \varepsilon > 0, \sum_{k=\mathcal{N}(\varepsilon)}^{\infty} \frac{1}{\sigma_k} \leq \varepsilon.$

Theorem [Fattorini-Russel, 1974]

Let $\rho > 0$ and $\mathcal{N} : \mathbb{R}^+ \to \mathbb{N}$.

$$\forall \varepsilon > 0, \exists K_{\varepsilon} > 0, \forall \Sigma \in \mathcal{L}(\rho, \mathcal{N}), \exists (q_k^{\Sigma})_{k \geq 1}, \forall k \geq 1, \|q_k^{\Sigma}\|_{L^2} \leq K_{\varepsilon} \exp(\varepsilon \sigma_k).$$

where (q_h^{Σ}) is a biorthogonal family for Σ .

The moment method, part 3/3: justifications on an example

WHEN
$$\gamma = 1$$
 AND $q = 0$: $\mathcal{A} = -\Delta$ (UNIFORM MESH)

Theorem [López-Zuazua, 1998], boundary control problem.

The moment method on the semi-discretized heat equation gives uniformly bounded control :

$$||V_{\mathbf{b}}^{h}||_{L^{2}(0,T;\mathbb{R})} \le C_{T}||y^{h,0}||.$$

for the null-control problem (P^h) .

PROOF Explicit expression for the eigenelements!

$$\forall k \in \{1, \dots, N\}, \ \lambda_k^h = \frac{4}{h^2} \sin^2\left(\frac{\pi h k}{2}\right)$$

Extend the sequence:

$$(\lambda_k^h)_{k\geq 1} = \begin{cases} \frac{4}{h^2} \sin^2(\frac{\pi h k}{2}), & \text{for } k \in \{1, \dots N\}, \\ k^2 \pi^2, & \text{for } k \geq N+1. \end{cases}$$
 (discrete eigenvalues)

There exist $\rho > 0$, and \mathcal{N} such that

$$\forall h > 0, \Lambda^h := (\lambda_k^h)_{k \ge 1} \in \mathcal{L}(\rho, \mathcal{N}).$$

$$\text{ and since}: \phi_k^h = (\sin(j\pi hk))_{j=1}^N, \text{ we can estimate } \left|\frac{0-(\phi_k^h)_N}{h}\right| \geq \frac{2}{\pi}\sqrt{\lambda_k^h}.$$

The moment method, part 3/3: justifications on an example

WHEN
$$\gamma = 1$$
 AND $q = 0$: $\mathcal{A} = -\Delta$ (UNIFORM MESH)

Theorem [López-Zuazua, 1998], boundary control problem.

The moment method on the semi-discretized heat equation gives uniformly bounded control:

$$||V_{\mathbf{b}}^{h}||_{L^{2}(0,T;\mathbb{R})} \le C_{T}||y^{h,0}||.$$

for the null-control problem (P^h) .

γ AND q IN THE GENERAL CASE?

Can one obtain the same results with a general operator $\mathcal{A} = -\frac{\partial}{\partial x} \left(\gamma \frac{\partial}{\partial x} \cdot \right) + q \cdot ?$ No explicit formulae for the eigenelements.

STRATEGY

- Find ρ and \mathcal{N} such that : $\forall h > 0, \Lambda^h \in \mathcal{L}(\rho, \mathcal{N})$.
- ullet Find lower bounds on $\left| rac{0 (\phi_k^h)_N}{h} \right|$ and $\| \mathbf{1}_{\omega} \phi_k^h \|$.

Outline.

• The moment method on a semi-discretized parabolic equation.

2 Discrete spectral properties.

3 Application in control theory

PROBLEME

Find sharp lower-bounds for : $\left| \frac{0 - (\phi_h^h)_N}{h} \right|$ and $\| \mathbf{1}_{\omega} \phi_h^h \|$.

Lemma

Assume that one can prove that there exists C_k such that $\forall 1 \leq i,j \leq N$:

$$\left| \left| (\phi_k^h)_i \right| + \left| \frac{(\phi_k^h)_i - (\phi_k^h)_{i-1}}{h\sqrt{\lambda_k^h}} \right| \ge C_k \left(\left| (\phi_k^h)_j \right| + \left| \frac{(\phi_k^h)_j - (\phi_k^h)_{j-1}}{h\sqrt{\lambda_k^h}} \right| \right) \right|$$
(1)

then the following relations holds: $\left| \frac{0 - (\phi_k^h)_N}{h \sqrt{\lambda_k^h}} \right| \ge C_k$ and $\| \mathbf{1}_{\omega} \phi_k^h \| \ge C_k$.

Prove (2) with a sharp constant C_k .

PROOF How to prove (2)?

CONTINUOUS SETTING

EINGENVALUE PROBLEME FOR $\mathcal{A} := -\partial_x(\gamma \partial_x \cdot) + q \cdot$

- ODE of ordre 2 : $A\phi_k = \lambda_k \phi_k \longrightarrow \text{system of ODEs of dimension 2}$.
- CHANGE OF VARIABLE $: \Phi_k(x) = \begin{pmatrix} \phi_k(x) \\ \gamma(x)\phi_k'(x) \end{pmatrix}$
- $\bullet \text{ We get the relation}: \ \Phi_k'(x) = \begin{pmatrix} 0 & 1/\gamma(x) \\ -\lambda_k & 0 \end{pmatrix} \Phi_k(x) + \begin{pmatrix} 0 & 0 \\ q(x) & 0 \end{pmatrix} \Phi_k(x)$
- Set $S(x, x_0) = \exp\left(\int_{x_0}^x \begin{pmatrix} 0 & 1/\gamma(x) \\ -\lambda_k & 0 \end{pmatrix}\right)$.
- Duhamel formula : $\Phi_k(x) = S(x, x_0) \Phi_k(x_0) + \int_{x_0}^x S(x, s) \begin{pmatrix} 0 & 0 \\ q(x) & r(x) \end{pmatrix} \Phi_k(s) ds.$
- Gronwall's lemma : $\|\Phi_k(x)\| \le \|S(x,x_0)\Phi_k(x_0)\| \exp\left(\int_{x_0}^x \|q\|_{\infty} \|S(x,s)\| ds\right)$.

$$||S(x,x_0)|| \le ?$$

PROOF How to prove (2)?

CONTINUOUS SETTING

EINGENVALUE PROBLEME FOR $\mathcal{A} := -\partial_x(\gamma \partial_x \cdot) + q \cdot$

- ODE of ordre 2 : $A\phi_k = \lambda_k \phi_k \longrightarrow \text{system of ODEs of dimension 2}$.
- CHANGE OF VARIABLE : $\Phi_k(x) = \begin{pmatrix} \phi_k(x) \\ \sqrt{\frac{\gamma(x)}{\lambda_k}} \phi_k'(x) \end{pmatrix}$
- We get the relation:

$$\Phi'_k(x) = \begin{pmatrix} 0 & \sqrt{\frac{\lambda_k}{\gamma(x)}} \\ -\sqrt{\frac{\lambda_k}{\gamma(x)}} & 0 \end{pmatrix} \Phi_k(x) + \begin{pmatrix} 0 & 0 \\ q(x) & \underbrace{\frac{1}{\sqrt{\gamma(x)}} \left(\frac{1}{\sqrt{\gamma}}\right)'(x)}_{:=r(x)} \end{pmatrix} \Phi_k(x)$$

- Set $S(x, x_0) = \exp\left(\int_{x_0}^x \begin{pmatrix} 0 & \sqrt{\frac{\lambda_k}{\gamma(x)}} \\ -\sqrt{\frac{\lambda_k}{\gamma(x)}} & 0 \end{pmatrix}\right).$
- Duhamel formula :

$$\Phi_k(x) = S(x, x_0)\Phi_k(x_0) + \int_{x_0}^x S(x, s) \begin{pmatrix} 0 & 0 \\ q(x) & r(x) \end{pmatrix} \Phi_k(s) \mathrm{d}s.$$

• Gronwall's lemma : $\|\Phi_k(x)\| \le \|S(x,x_0)\Phi_k(x_0)\| \exp\left(\int_{x_0}^x C\|S(x,s)\| ds\right)$.

$$||S(x,x_0)|| = 1 \Rightarrow |\phi(x)| + \frac{1}{\sqrt{\lambda_k}} |\phi'(x)| \le e^C \left(|\phi(x_0)| + \frac{1}{\sqrt{\lambda_k}} |\phi'(x_0)| \right)$$

D. Allonsius, F. Boyer and M. Morancey.

PROOF How to prove (2)?

DISCRETE SETTING

EINGENVALUE PROBLEME FOR \mathcal{A}^h

- "ODE" of ordre 2: $\mathcal{A}^h \phi_k^h = \lambda_k^h \phi_k^h \longrightarrow \text{system of "ODEs" of dimension 2.}$
- $\bullet \text{ CHANGE OF VARIABLE } (\Phi^h_k)_j = \left(\frac{(\phi^h_k)_j (\phi^h_k)_j}{h} \frac{\sqrt{\gamma_{j-1/2}}}{\sqrt{\lambda^h_k}}\right)$
- Duhamel's formula + Gronwall's lemma : $\forall 1 \leq i, j \leq N, \ \|(\Phi_k^h)_j\| \leq C \max_{1 \leq i, j \leq N} \|S_{i,j}^k\| \|(\Phi_k^h)_i\|.$

where :
$$S_{i,j}^k = (I_h + hM_{\lambda_k^h,i-1})(I_h + hM_{\lambda_k^h,i-2})\dots(I_h + hM_{\lambda_k^h,j}),$$

$$\text{ and }: M_{\lambda_k^h,j} := \begin{pmatrix} -h \frac{\lambda_k^h}{\gamma_{j+1/2}} & \sqrt{\frac{\lambda_k^h}{\gamma_{j+1/2}}} \\ -\sqrt{\frac{\lambda_k^h}{\gamma_{j+1/2}}} & 0 \end{pmatrix}$$

• Thus,

$$\left|\left|(\phi_k^h)_i\right| + \left|\frac{(\phi_k^h)_i - (\phi_k^h)_{i-1}}{h\sqrt{\lambda_k^h}}\right| \ge \max_{1 \le i,j \le N} \|S_{i,j}^k\| \left(\left|(\phi_k^h)_j\right| + \left|\frac{(\phi_k^h)_j - (\phi_k^h)_{j-1}}{h\sqrt{\lambda_k^h}}\right|\right)\right|$$

Proposition : Estimates on $S_{i,j}^k$

Estimates on the semi-group $S_{i,j}^k$ for all i,j:

• For any $k: ||S_{i,j}^k|| \le e^{C\sqrt{\lambda_k^h}}$,

Proposition: Estimates on the eigenvectors

• For any $k: \left| \frac{(\phi_k^h)_N}{h} \right| \ge C_1 e^{-C_2 \sqrt{\lambda_k^h}}$ and $h \sum_{jh \in \omega} |(\phi_k^h)_j|^2 \ge C_1 e^{-C_2 \sqrt{\lambda_k^h}}$

Proposition: Gap property

• For any k: NO UNIFORM GAP PROPERTY.

Proposition : Estimates on ${\cal S}^k_{i,j}$

Estimates on the semi-group $S_{i,j}^k$ for all i,j:

• For any $k: ||S_{i,j}^k|| \le e^{C\sqrt{\lambda_k^h}}$,

Define

$$k_{\max}^h := \max \left\{ k \in \{1, \dots N\}; \ \lambda_k^h < \frac{4}{h^2} \gamma_{min} (1 - \varepsilon) \right\}.$$

• For $k \leq k_{\max}^h$: $\|S_{i,j}^k\| \leq \frac{1}{\delta_{\varepsilon}}$

Proposition: Estimates on the eigenvectors

- For any $k: \left| \frac{(\phi_k^h)_N}{h} \right| \ge C_1 e^{-C_2 \sqrt{\lambda_k^h}}$ and $h \sum_{jh \in \omega} |(\phi_k^h)_j|^2 \ge C_1 e^{-C_2 \sqrt{\lambda_k^h}}$
- For $k \le k_{\max}^h$: $\left| \frac{(\phi_k^h)_N}{h} \right| \ge \delta_{\varepsilon} \sqrt{\lambda_k^h}$ and $h \sum_{jh \in \omega} |(\phi_k^h)_j|^2 \ge \delta_{\varepsilon}$

Proposition : Gap property

- For any k: NO UNIFORM GAP PROPERTY.
- For $k \leq k_{\max}^h$: $\lambda_{k+1}^h \lambda_k^h \geq \delta_{\varepsilon}$

Outline.

The moment method on a semi-discretized parabolic equation

Discrete spectral properties

3 Application in control theory

Recap.

EXPRESSIONS OF THE CONTROLS

$$\begin{split} V_{\rm d}^h(t) &= \sum_{j=1}^N \frac{-\left(y^{h,0}, e^{-\lambda_j^h T} \phi_j^h\right)_h}{\|\mathbf{1}_\omega \phi_j^h\|_h^2} \phi_j^h q_j^{\Lambda^h}(t), \\ V_{\rm b}^h(t) &= \sum_{j=1}^N \frac{\left(y^{h,0}, e^{-\lambda_j^h T} \phi_j^h\right)_h}{\gamma_{N+1/2} \left(\frac{0-\phi_{j,N}^h}{h}\right)} q_j^{\Lambda^h}(t). \end{split}$$

RECALL THE STRATEGY

- ullet Find lower bounds on $\left| rac{0 (\phi_k^h)_N}{h}
 ight|$ or $\| \mathbf{1}_\omega \phi_k^h \| : \mathbf{OK}.$
- Find ρ and \mathcal{N} such that : $\forall h > 0, \Lambda^h \in \mathcal{L}(\rho, \mathcal{N})$: KO.

TO SUM UP

- For all k, $h \sum_{jh \in \omega} |(\phi_k^h)_j|^2 \ge C_1 e^{-C_2 \sqrt{\lambda_k^h}}$.
- For all k, $\left|\frac{(\phi_k^h)_N}{h}\right| \ge C_1 e^{-C_2 \sqrt{\lambda_k^h}}$.
- If $k \leq k_{\max}^h$, then $\lambda_{k+1}^h \lambda_k^h \geq \delta_{\varepsilon}$.

Partial controlability result.

Theorem [A.-Boyer-Morancey, 2016]

We say that relaxed control up to rank k_{\max}^h holds for system (P^h) if : $\forall T>0$, there exists a control $V_{\rm d}^h$ (or $V_{\rm b}^h$) satisfying

$$\forall h > 0, \|V_{d}^{h}\| \le C\|y^{h,0}\| \quad (\text{or } \|V_{b}^{h}\| \le C\|y^{h,0}\|)$$

and such that the corresponding solution verifies:

$$\forall h > 0, \|y^h(T)\| \le C\|y^{h,0}\|e^{-\frac{T}{2}\lambda_{k_{\max}}^h}.$$

Let $\varepsilon > 0$ and let k_{\max}^h be such that $\lambda_{k_{\max}^h}^h < \frac{4}{h^2} \gamma_{min} (1 - \varepsilon)$.

Relaxed controllability up to rank k_{\max}^h holds for system (P^h) .

Remarks

- The solution satisfies in fact : $\forall h > 0$, $||y^h(T)|| \le ||y^{h,0}|| C_1 e^{-\frac{C_2}{h^2}}$.
- Simpler proof of known results with a wider range of applications.

Controllability of a parabolic system in cascade.

System of two parabolic equations in one space dimension, $\Omega = (0, L)$. Only one control force on the first equation (distributed or boundary).

$$(\mathbf{S}^h) \left\{ \begin{aligned} (y^h)'(t) + \begin{pmatrix} \mathcal{A}^h & 0 \\ 1 & \mathcal{A}^h \end{pmatrix} y^h(t) &= \begin{pmatrix} V_\mathsf{d}^h \mathbf{1}_\omega \\ 0 \end{pmatrix} + \gamma_{N+1/2} \frac{V_b^h(t)}{h^2} \left(\mathbf{e}_\mathbf{N} \mathbf{0} \right), \text{ on } (0, T), \\ y^h(0) &= y^{h,0} \in \mathbb{R}^N \\ y_0^h(t) &= 0, \text{ on } (0, T), \end{aligned} \right.$$

Note that the second equation is controlled by the solution to the first one.

Controllability of a parabolic system in cascade.

System of two parabolic equations in one space dimension, $\Omega = (0, L)$. Only one control force on the first equation (distributed or boundary).

$$(\mathbf{S}^h) \left\{ \begin{aligned} (y^h)'(t) + \begin{pmatrix} \mathcal{A}^h & 0 \\ 1 & \mathcal{A}^h \end{pmatrix} y^h(t) &= \begin{pmatrix} V_{\mathrm{d}}^h \mathbf{1}_{\omega} \\ 0 \end{pmatrix} + \gamma_{N+1/2} \frac{V_b^h(t)}{h^2} \left(\mathbf{e_N} \mathbf{0} \right), \text{ on } (\mathbf{0}, T), \\ y^h(0) &= y^{h,0} \in \mathbb{R}^N \\ y_0^h(t) &= 0, \text{ on } (\mathbf{0}, T), \end{aligned} \right.$$

Theorem [A.-Boyer-Morancey, 2016]

Let $\varepsilon > 0$ and let k_{\max}^h be such that $\lambda_{k_{\max}^h}^h < \frac{4}{h^2} \gamma_{min} (1 - \varepsilon)$.

Relax controllability up to rank k_{\max}^h holds for system (S^h).

Remarks

The Carleman technics employed by [2010, Boyer, Hubert and Le Rousseau] cannot be used here.

Controllability of a parabolic system in cascade.

System of two parabolic equations in one space dimension, $\Omega = (0, L)$. Only one control force on the first equation (distributed or boundary).

$$(\mathbf{S}^h) \left\{ \begin{aligned} (y^h)'(t) + \begin{pmatrix} \mathcal{A}^h & 0 \\ 1 & \mathcal{A}^h \end{pmatrix} y^h(t) &= \begin{pmatrix} V_{\mathsf{d}}^h \mathbf{1}_{\omega} \\ 0 \end{pmatrix} + \gamma_{N+1/2} \frac{V_b^h(t)}{h^2} \left(\mathbf{e_N} \mathbf{0} \right), \text{ on } (0,T), \\ y^h(0) &= y^{h,0} \in \mathbb{R}^N \\ y_0^h(t) &= 0, \text{ on } (0,T), \end{aligned} \right.$$

Elements of proof.

Main difference with the scalar case:

- Operator $\begin{pmatrix} \mathcal{A}^h & 0 \\ 1 & \mathcal{A}^h \end{pmatrix}$ is not diagonalizable \Rightarrow we use the Jordan form.
- $\bullet \ \ \text{Existence} + \text{estimates of a biorthogonal family for} \left(e^{-\lambda_k^h t}\right)_{k \geq 1} \cup \left(te^{-\lambda_k^h t}\right)_{k \geq 1}.$

Conclusion.

SUM UP

We have built an elementary approach:

- to solve the control problem for a large class of parabolic equations,
- which applies on quasi-uniform meshes,
- which applies on a parabolic cascade system,
 (with fewer controls than equations)
- only valid in 1D.

PERSPECTIVE

Cascade systems with variable coefficients.

Bonus slide 1 : Numerical results

Basic approach : One could have tried to use numerical analysis $\lambda_k^h \approx \lambda_k$. $\lambda_k^h \approx \lambda_k \implies$ Gap property only for a portion of the spectrum.

Bonus slide 1 : Numerical results

Basic approach : One could have tried to use numerical analysis $\lambda_k^h \approx \lambda_k$. $\lambda_k^h \approx \lambda_k \implies$ Gap property only for a portion of the spectrum.

Bonus slide 2: Extension of [Fattorini-Russel, 1974]

Definition : set of sequences $\mathcal{L}(\rho, \mathcal{N})$

Let $\rho > 0$ and $\mathcal{N} : \mathbb{R}^+ \to \mathbb{N}$.

Denote by $\mathcal{L}(\rho, \mathcal{N})$ the set of sequences $\Sigma = (\sigma_k)_{k \geq 1}$ such that :

- $\forall k \geq 1, \, \sigma_{k+1} \sigma_k \geq \rho,$
- $\bullet \ \forall \varepsilon > 0, \ \sum_{k=\mathcal{N}(\varepsilon)}^{\infty} \frac{1}{\sigma_k} \leq \varepsilon.$

Theorem [Fattorini-Russel, 1974]

Let $\rho > 0$ and $\mathcal{N} : \mathbb{R}^+ \to \mathbb{N}$.

$$\forall \varepsilon > 0, \ \exists K_{\varepsilon} > 0, \ \overline{\forall \Sigma \in \mathcal{L}(\rho, \mathcal{N})}, \ \exists (q_k^{\Sigma})_{k \geq 1}, \ \forall k \geq 1, \ \|q_k^{\Sigma}\|_{L^2} \leq K_{\varepsilon} \exp(\varepsilon \sigma_k).$$

where (q_k^{Σ}) is a biorthogonal family for Σ .

[Ammar Khodja - Benabdallah - González Burgos - de Teresa, 2011]

Let $m \in \mathbb{N}$, we have the same results for the family $(t^j e^{-\sigma_k t})_{m \geq j \geq 0, k \geq 1}$.

Lemma

Assume that one can prove that there exists C_k such that $\forall 1 \leq i, j \leq N$:

$$\left| \left| (\phi_k^h)_i \right| + \left| \frac{(\phi_k^h)_i - (\phi_k^h)_{i-1}}{h\sqrt{\lambda_k^h}} \right| \ge C_k \left(\left| (\phi_k^h)_j \right| + \left| \frac{(\phi_k^h)_j - (\phi_k^h)_{j-1}}{h\sqrt{\lambda_k^h}} \right| \right) \right|$$
 (2)

then the following relations holds: $\left| \frac{0 - (\phi_k^h)_N}{h \sqrt{\lambda_k^h}} \right| \ge C_k$ and $\| \mathbf{1}_{\omega} \phi_k^h \| \ge C_k$.

PROOF (SKETCH)

$$\begin{split} \left| (\phi_k^h)_i \right| + \left| \frac{(\phi_k^h)_i - (\phi_k^h)_{i-1}}{h\sqrt{\lambda_k^h}} \right| &\geq C_k \left(\left| (\phi_k^h)_j \right| + \left| \frac{(\phi_k^h)_j - (\phi_k^h)_{j-1}}{h\sqrt{\lambda_k^h}} \right| \right) \\ \left| (\phi_k^h)_i \right| + \left| \frac{(\phi_k^h)_i - (\phi_k^h)_{i-1}}{h\sqrt{\lambda_k^h}} \right| &\geq C_k \left| (\phi_k^h)_j \right| \text{ now } : h \sum_{j=1}^N \cdot \\ \left| (\phi_k^h)_i \right| + \left| \frac{(\phi_k^h)_i - (\phi_k^h)_{i-1}}{h\sqrt{\lambda_k^h}} \right| &\geq C_k. \text{ Take } i = N+1 : \left| \frac{0 - (\phi_k^h)_N}{h\sqrt{\lambda_k^h}} \right| \geq C_k. \end{split}$$

Lemma

Assume that one can prove that there exists C_k such that $\forall 1 \leq i, j \leq N$:

$$\left| \left| (\phi_k^h)_i \right| + \left| \frac{(\phi_k^h)_i - (\phi_k^h)_{i-1}}{h\sqrt{\lambda_k^h}} \right| \ge C_k \left(\left| (\phi_k^h)_j \right| + \left| \frac{(\phi_k^h)_j - (\phi_k^h)_{j-1}}{h\sqrt{\lambda_k^h}} \right| \right) \right|$$
 (2)

then the following relations holds: $\left| \frac{0 - (\phi_k^h)_N}{h \sqrt{\lambda_k^h}} \right| \ge C_k$ and $\| \mathbf{1}_{\omega} \phi_k^h \| \ge C_k$.

PROOF (SKETCH) Now : $\|\mathbf{1}_{\omega}\phi_{k}^{h}\| \geq C_{k}$?

Find a nodal domain
$$(a,b)$$
 in $\omega: \phi_k(a) = \phi_k(b) = 0$
$$\int_a^b -\partial_x (\gamma \partial_x \phi_k)(x) \phi_k(x) \mathrm{d}x = \lambda_k \int_a^b (\phi_k(x))^2 \mathrm{d}x$$
 Integrate by parts
$$\int_a^b (\gamma(x) \partial_x \phi_k(x))^2 \mathrm{d}x = \lambda_k \int_a^b (\phi_k(x))^2 \mathrm{d}x$$

Lemma

Assume that one can prove that there exists C_k such that $\forall 1 \leq i, j \leq N$:

$$\left| \left| (\phi_k^h)_i \right| + \left| \frac{(\phi_k^h)_i - (\phi_k^h)_{i-1}}{h\sqrt{\lambda_k^h}} \right| \ge C_k \left(\left| (\phi_k^h)_j \right| + \left| \frac{(\phi_k^h)_j - (\phi_k^h)_{j-1}}{h\sqrt{\lambda_k^h}} \right| \right) \right|$$
(2)

then the following relations holds: $\left| \frac{0 - (\phi_k^h)_N}{h \sqrt{\lambda_k^h}} \right| \ge C_k$ and $\| \mathbf{1}_{\omega} \phi_k^h \| \ge C_k$.

PROOF (SKETCH) Now : $\|\mathbf{1}_{\omega}\phi_{k}^{h}\| \geq C_{k}$?

Integrate by parts
$$\int_a^b (\gamma(x)\partial_x\phi_k(x))^2 \mathrm{d}x = \lambda_k \int_a^b (\phi_k(x))^2 \mathrm{d}x$$
 Use the expression
$$\phi_k(x) + \frac{1}{\sqrt{\lambda_k}} \partial_x\phi_k(x) \geq C_1$$

$$\int_a^b \lambda_k (\phi_k(x))^2 + (\gamma(x)\partial_x\phi_k(x))^2 \mathrm{d}x \geq \lambda_k C_2$$

Lemma

Assume that one can prove that there exists C_k such that $\forall 1 \leq i, j \leq N$:

$$\left| \left| (\phi_k^h)_i \right| + \left| \frac{(\phi_k^h)_i - (\phi_k^h)_{i-1}}{h\sqrt{\lambda_k^h}} \right| \ge C_k \left(\left| (\phi_k^h)_j \right| + \left| \frac{(\phi_k^h)_j - (\phi_k^h)_{j-1}}{h\sqrt{\lambda_k^h}} \right| \right) \right|$$
 (2)

then the following relations holds: $\left| \frac{0 - (\phi_k^h)_N}{h \sqrt{\lambda_k^h}} \right| \ge C_k$ and $\| \mathbf{1}_{\omega} \phi_k^h \| \ge C_k$.

PROOF (SKETCH) Now : $\|\mathbf{1}_{\omega}\phi_{k}^{h}\| \geq C_{k}$?

Integrate by parts
$$\int_a^b (\gamma(x)\partial_x\phi_k(x))^2 \mathrm{d}x = \lambda_k \int_a^b (\phi_k(x))^2 \mathrm{d}x$$
 Use the expression $\phi_k(x) + \frac{1}{\sqrt{\lambda_k}} \partial_x \phi_k(x) \ge C_1$
$$\int_a^b \lambda_k (\phi_k(x))^2 + \left[(\gamma(x)\partial_x \phi_k(x))^2 \right] \mathrm{d}x \ge \lambda_k C_2$$

Lemma

Assume that one can prove that there exists C_k such that $\forall 1 \leq i, j \leq N$:

$$\left| \left| (\phi_k^h)_i \right| + \left| \frac{(\phi_k^h)_i - (\phi_k^h)_{i-1}}{h\sqrt{\lambda_k^h}} \right| \ge C_k \left(\left| (\phi_k^h)_j \right| + \left| \frac{(\phi_k^h)_j - (\phi_k^h)_{j-1}}{h\sqrt{\lambda_k^h}} \right| \right) \right|$$
 (2)

then the following relations holds: $\left| \frac{0 - (\phi_k^h)_N}{h \sqrt{\lambda_k^h}} \right| \ge C_k$ and $\| \mathbf{1}_{\omega} \phi_k^h \| \ge C_k$.

PROOF (SKETCH) Now : $\|\mathbf{1}_{\omega}\phi_{k}^{h}\| \geq C_{k}$?

Integrate by parts
$$\int_a^b (\gamma(x)\partial_x\phi_k(x))^2 \mathrm{d}x = \lambda_k \int_a^b (\phi_k(x))^2 \mathrm{d}x$$
 Use the expression
$$\phi_k(x) + \frac{1}{\sqrt{\lambda_k}} \partial_x \phi_k(x) \ge C_1$$

$$\int_a^b 2\lambda_k (\phi_k(x))^2 \mathrm{d}x \ge \lambda_k C_2$$

Lemma

Assume that one can prove that there exists C_k such that $\forall 1 \leq i, j \leq N$:

$$\left| \left| (\phi_k^h)_i \right| + \left| \frac{(\phi_k^h)_i - (\phi_k^h)_{i-1}}{h\sqrt{\lambda_k^h}} \right| \ge C_k \left(\left| (\phi_k^h)_j \right| + \left| \frac{(\phi_k^h)_j - (\phi_k^h)_{j-1}}{h\sqrt{\lambda_k^h}} \right| \right) \right|$$
 (2)

then the following relations holds : $\left| \frac{0 - (\phi_k^h)_N}{h \sqrt{\lambda_k^h}} \right| \ge C_k$ and $\|\mathbf{1}_{\omega} \phi_k^h\| \ge C_k$.

PROOF (SKETCH) Now : $\|\mathbf{1}_{\omega}\phi_{k}^{h}\| \geq C_{k}$?

Integrate by parts
$$\int_a^b (\gamma(x)\partial_x\phi_k(x))^2 \mathrm{d}x = \lambda_k \int_a^b (\phi_k(x))^2 \mathrm{d}x$$
 Use the expression
$$\phi_k(x) + \frac{1}{\sqrt{\lambda_k}} \partial_x\phi_k(x) \ge C_1$$

$$\int (\phi_k(x))^2 \mathrm{d}x \ge \int_a^b (\phi_k(x))^2 \mathrm{d}x \ge C_3$$