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Introduction.

WHAT WE ARE INTERESTED IN
Discrete control theory on a semi-discretized parabolic equation on Q = (0, 1).
A" discretization of an elliptic operator (example : A = —A).

Ay (1) + AMy" (1) = V' ()1e, on (0,T), (w C Q),
y"(0) =y"° e RV,
¥ () =0, on (0,T),

Yh 41 (8) = V' (1), on (0,T),

Find V' € L2(0,T;RY) OR V{# € L2(0,T;R) :
o yM(T) =0
° Vh,

) Vbh uniformly bounded w.r.t. h.

Discrete control on parabolic equations.



Introduction.

WHAT WE ARE INTERESTED IN
Discrete control theory on a semi-discretized parabolic equation on Q = (0, 1).
A" discretization of an elliptic operator (example : A = —A).

Ay (1) + AMy" (1) = VI (1)1s, on (0,T), (w C Q),
y"(0) =y"° eRY,

Yo (t) = 0, on (0,7T),

Yns1(t) = Vi' (1), on (0, 7),

WHAT WAS DONE BEFORE
1998, Lopez and Zuazua

o semi-discretized heat equation : A" = —Al
o uniform mesh,

e boundary null-control problem : V",

e in space dimension 1 : Q = (0,1).
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WHAT WE ARE INTERESTED IN
Discrete control theory on a semi-discretized parabolic equation on Q = (0, 1).
A" discretization of an elliptic operator (example : A = —A).

Ay (1) + AMy" (1) = VI (1)1s, on (0,T), (w C Q),
y"(0) =y"° eRY,

Yo (t) = 0, on (0,7T),

Yns1(t) = Vi' (1), on (0, 7),

WHAT WAS DONE BEFORE
2010, Boyer, Hubert and Le Rousseau

o semi-discretized parabolic equation : A* = (=8, (y8.-))",

o distributed control problem : V"

> (relaxed control)

@ in space dimension > 1,

discrete Carleman estimates.

WHAT WE DO
Extend their work to :

h
o Cascade system of parabolic equations : (/; f?h) with (con&rol)

e boundary and distributed controls : th, Vbh7

e BUT : in space dimension 1.

control on parabolic equations.



@ The moment method on a semi-discretized parabolic equation.

© Discrete spectral properties.

@ Application in control theory

e control on parabolic equations.



utline.

@ The moment method on a semi-discretized parabolic equation.
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The null-control problem.

DISCRETE PROBLEM
") () + A"y (t) = 0, on (0,T),
y"(0) = "0 e RV
yg(t) =0, on (0, 7),

YR 1(t) =0, on (0, 7).

(P")

ELLIPTIC OPERATOR
h
h . 9 9
o A= (=2 (vE) +4)
h h
MOE0)
o (Ahyh); = —+ <7j+1/2 e n = —Vj-1/2

o Denote by (AP := (AP)N_ (¢?)IV_|) the eigenelements of A", [|¢h||;, = 1.

yh(e)—yh 4 ()
e ) ()

PARAMETERS

° geC'(9),
o 7€ C*HQ), v > Ymin >0,
o V4 € L%(0,T;R).

and M. Morancey. Discrete control on parabolic equations.



The null-control problem.

DISCRETE PROBLEM
") () + A"y (t) = 0, on (0,T),
y"(0) = "0 e RV

yg(t) =0, on (0, 7),

YR 1(t) =0, on (0, 7).

(P")

ELLIPTIC OPERATOR
h
h . ] 9
i (4 (1) +0)
0—yl (¢ vR -yl ()
° (-Ahyh)N = —% (’YN+1/2 y}fv( ) —’YN—1/2% +‘1Ny5lv(t)

o Denote by (AP := (AP)N_ (¢?)IV_|) the eigenelements of A", [|¢h||;, = 1.

PARAMETERS

° geC'(9),
o 7€ C*HQ), v > Ymin >0,
o V4 € L%(0,T;R).
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The null-control problem.

DISCRETE PROBLEM

") (t) + A"y"(t) = 0, on (0,7),

y"(0) =y e RN

Yo (t) =0, on (0, 7),

YR (t) = Vi(t) € L*(0,T;R), on (0,T).

(")

ELLIPTIC OPERATOR
h
h . ] 9
i (4 (1) +0)
0—yl (¢ vR -yl ()
° (-Ahyh)N = —% (’YN+1/2 y}fv( ) —’YN—1/2% +‘1Ny5lv(t)

o Denote by (AP := (AP)N_ (¢?)IV_|) the eigenelements of A", [|¢h||;, = 1.

PARAMETERS

° geC'(9),
o 7€ C*HQ), v > Ymin >0,
o V4 € L%(0,T;R).
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The null-control problem.

DISCRETE PROBLEM

0
V) |
(") (&) + Aryh(t) = 0 + ’YN+1/2272 O ,on (0,7T),
(P") !
y"(0) =y e RN
yg(t) =0, on (0,7),
yh 1 (t) = Vi (t) € L*(0,T;R), on (0,T).
ELLIPTIC OPERATOR
h
o A= (£ (v& ) +a)
0—yh (¢ YR () =yl 1 ()
o (AMyM)Ny =—4 (’YN+1/2 y}f]( ) — gy EEEINSLE ) gyl (L)

o Denote by (AP := (AP)N_  (#?)I_|) the eigenelements of A", [|¢h||;, = 1.

and M. Morancey.
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The null-control problem.

DISCRETE PROBLEM

h

VIi(t
(6 () + AP 1) = 0+ vy 412 e, om (0.7),

(Ph) yh(o) — yh,O c ]RN
Y6 (t) =0, on (0,T),
Y41 (t) = Vo (t) € L*(0,T;R), on (0,T).

ELLIPTIC OPERATOR
h
h . ] 9
i (4 () )
h h h h
Y1 () —yy (1) yi () -y 1 (8)
° (Ahyh)j = _% <7j+1/2mfj _Wj—l/Q%) +qjy;.’(t)
o Denote by (AP := (AP)N_  (#?)I_|) the eigenelements of A", [|¢h||;, = 1.
PARAMETERS

0 g€ C%),
o v € C%(Q), ¥ > Ymin >0,
o Vi, € L%(0,T;R).

and M. Morancey. Discrete control on parabolic equations.



The moment method, part 1/3 : the moment problem

PROPERTY OF THE SOLUTION

T h
o/ e MT-Hgh
0
o Integrate by parts,
2k 0— ()N T mer_
(P 08) = (s 08) = s () [T b0

h
") (t) + Aryl () = 0 + IN41/2 Vth(t)eN} ) dt,

h

0
y"(T) =0
T
—AR 0—(¢M)n T e
Vke{l,...N}, — (y(’%e A’“Tﬂ) = —IN+1/2 <h’“ /0 e MR T=Oyh@)de
MOMENT PROBLEM
Find th and Vbh', uniformly bounded in h, such that :
€R
0— N [T _srereoTnom
,4{N+1/2Tk\/0 e~ Mk (T—1) Vbh(t) dt

_\h
Vke{1,...N}, — (yg,e MT¢§;) -
[ IO @), 1o ar
JO N——
ERN

Discrete control on parabolic equations.



The moment method, part 2/3 : formal solution

Definition : Biorthogonal family

Let ¥ := (ox)r>1 be a sequence of positive real numbers.
Biorthogonal family for X, (qu)jzl g

T
Wk, j > 1, g% € L2(0,T), / e~k T=0Z ()dt = &y, ;.
0

Recall the problem : (A" := (AI)>1 : eigenvalues of A")
T
/ )J(T t)( ()1“)(1)1‘)
ho—ART h 0
—\Y%-€ k (b =
< 0 k> 0*(¢Q)N r AT —t)yh
“YN+1/2 h . e V' (t)dt

POSSIBLE EXPRESSIONS FOR THE CONTROLS

h
N _ h,0 *)\_7 T h
(U ) € a]

h b Al
Vi) =>" TR ora; (t),
=1 w@ h
N (yn0, e Tl
’ Ah
HOEDYS g (8).

0—¢ J
J:1’YN+1/2< th)

nd M. Morancey. Discrete control on parabolic equations.



The moment method, part 3/3 : just

IT REMAINS TO PROVE

. 0— ¢l
o Uniform bounds on Vi and V' < | |16} > ? and <7’N> >

h
@ Bounds/existence of (q;x )j>1 forall h >0

POSSIBLE EXPRESSIONS FOR THE CONTROLS

N _ h.(]‘ ’*)\_}KT {7
vd’?(t):Z—(y <)

j=1

h A
AR
3 llh

R0 —A'T p
(y T, € J ¢7> Ah

T Jo—oh o\ a; (t).
i—1 3, N
I=LYN+1/2 ( i >

Discrete control on parabolic equations.



The moment method, part 3/3 : just

IT REMAINS TO PROVE

0— ol
@ Uniform bounds on V} and V' < leq’)i"Hi > 7 and <7JN> > 7

@ Bounds/existence of (qfh)j21 forall h > 0 < ‘ find p, N : Vh >0, A" € L(p, N)

Definition : set of sequences L(p, )

Let p>0and N : Rt — N.
Denote by L(p, ) the set of sequences 3 = (0 )r>1 such that :

o Vk>1, opy1 — 0k 2 p,
oo

1
ve>o0, Y —<e
e Ve > ok_f-:
k=N (¢)

Theorem [Fattorini-Russel, 1974]

Let p>0and NV : Rt — N.

Ve >0, 3K: > 0,|VE € L(p,N) |, Iax)e>1, Ve > 1, g5l 12 < Ke exp(eoy,).

where (i) is a biorthogonal family for .

Discrete control on parabolic equations.



The moment method, part 3/3 : justifications on an example

WHEN v=1AND ¢=0: A= —A (UNIFORM MESH)

Theorem [Lopez-Zuazua,1998|, boundary control problem.

The moment method on the semi-discretized heat equation gives uniformly
bounded control :

h h,0
A% HLQ(O,T;R) < Crlly™"|.

for the null-control problem (P?).

PROOF Explicit expression for the eigenelements!

4 hk
Vke{l,...,N}, AP = = sin2 (%)
Extend the sequence :

4 hk
A — Sin2(L), for k € {1,... N}, (discrete eigenvalues)
(AR)k>1 =4 h? 2
k?n?, for k> N + 1. (continuous eigenvalues)

There exist p > 0, and N such that

[Vh >0, |A" i= (Af)kz1 € L(p, N).

and since : ¢ = (sin(jwhk));\f:l, we can estimate

r and M. Morancey. Discrete control on parabolic equations.



The moment method, part 3/3 : justifications on an example

WHEN v=1AND ¢=0: A= —A (UNIFORM MESH)

Theorem [Lopez-Zuazua,1998], boundary control problem.

The moment method on the semi-discretized heat equation gives uniformly

bounded control :

h,
Vi ll L2 0,m%) < Crlly™°|l-

for the null-control problem (P?).

v AND ¢ IN THE GENERAL CASE?
Can one obtain the same results with a general operator A = 8@ ( 8A ) +q- 7
No explicit formulae for the eigenelements.

STRATEGY

o Find p and AV such that : VA > 0, A" € L(p,N).

h
o Find lower bounds on w and [|1,07].

r and M. Morancey. Discrete control on parabolic equations.



utline.

© Discrete spectral properties.
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Discrete bounds on eigenvec

PROBLEME

_(+h
Find sharp lower-bounds for : %

and |\IW®ZH.

Lemma

Assume that one can prove that there exists Cy such that V1 <i,5 < N :

(1) — (B)i1
hy/AR

(¢k (¢Z)j71

> Cy | |(#h] +
hy/AR

|(@h):| +

—(oh
then the following relations holds : % > Cj, and || 1@ || > Ck.

Prove (2) with a sharp constant C.

and M. M i control on parabolic equations.



Discrete bounds on eigenvectors.

PROOF How to prove (2)7
CONTINUOUS SETTING
EINGENVALUE PROBLEME FOR A := —0,(v02+) + ¢
o ODE of ordre 2 : A¢y, = A\p¢pp, — system of ODEs of dimension 2.

o CHANGE OF VARIABLE : & (z) = (W(ffq(f)(z))
k

We get the relation : & (z) = (_g\k 1/'6(90)) by (z) + (q(oa:) 8) Dy ()

Set S(, o) = exp (/z: (f;k 1%(3:))).

Duhamel formula :
0

* 0
Dy (x) = S(x,20)Pr(z0) + /xo S(z,s) (q(:v) r(x)) Dy, (s)ds.

T
o Gronwall’s lemma : || @y (z)]| < ||S(z, z0) Pk (z0)]|lexp (/ ||quo||S(x,s)||ds).
zo

15 (2, zo)|| <7

and M. Morancey. Discrete control on parabolic equations.



Discrete bounds on eigenvectors.

PROOF How to prove (2)7
CONTINUOUS SETTING
EINGENVALUE PROBLEME FOR A := —0,(v0z-) + ¢
o ODE of ordre 2 : A¢y = A\ —> system of ODEs of dimension 2.

x
o CHANGE OF VARIABLE : &(2) = [ /") )
e We get the relation :
0 0
0 RV 1 1\
@ (z) = 5 Z)("’) () + | 1) ~@) (ﬁ) @) | @ ()
() —/()_’

x0

e Set S(z,x0) = exp (/,I (\/OT m>>

o Duhamel formula :

- = 0 0
By () = S(z, 20) P (20) + /IO S(x, s) (q(x) T(I)) By (s)ds.

T
o Gronwall’s lemma : || @y (z)]| < ||S(z, z0) Pk (z0)|lexp (/ CHS(x,s)Hds).
zo

15 (z, @)l = 1 = |¢(2)| + —= |¢'(z)| < e <\¢(wo)| W(xo)|>

1
+7
Vg

and M. M Discrete control on parabolic equations.



Discrete bounds on eigenvectors.

PROOF How to prove (2)7
DISCRETE SETTING
EINGENVALUE PROBLEME FOR A"

e “ODE” of ordre 2 : .Ahgbz = )\gqbz — system of “ODEs” of dimension 2.
(¢k)]
o CHANGE OF VARIABLE (<I>Z)j = | (¢p )j—(¢k)g 1/ i-1/2
%

o Duhamel’s formula + Gronwall’s lemma :
V1<, i < N, [(@0);]l < € max, ISE @Rl

where : S, = (I, + h,MAQ’iil)(lh +hMp ;o). (In + hMyn ),

_p Dk Al

and : M/\Z,j — 'Y]J;lh/Q Yi+1/2

— k 0

Vj4+1/2
e Thus,
(@1)i — ($)i1 (93); — (93)i—1

(@] + | > xS | (o] + | STk

hy/AR < hy/AR

and M. Morancey. Discrete control on parabolic equations.



Proposition : Estimates on Sf"j

Estimates on the semi-group Sf]. for all 4,7 :

/\h
e For any k : HS{“’]H <e? Ak,

Proposition : Estimates on the eigenvec

o —Ca /A . — Oy /AR
e For any k : ‘%‘ > Chre” 2Vt and h3inew [(¢1);]2 > Cre” 72V 2k

Proposition : Gap property
e For any k£ : NO UNIFORM GAP PROPERTY.

Discrete control on parabolic equations.



Estimates on the semi-group Sk for all 4,7 :

/ R
e For any k : HSi,]‘H <e? ’“,

Define

4
kR, = max {k e{1,...N}; NP < 75 Ymin(l — a)} .

1
o For k <kl ¢ ISF;11 < 52

Proposition : Estimates on the eigenvec

h i) )\h —C )\h,
oForanyk:‘%‘ZCle 2V2k  and hzjh€w|(¢)\2>016 2V 7k

)

h
e For k <kl : ‘L’zm‘ > 55\@ and 737, | (¢M);12>6

Proposition : Gap property
e For any k£ : NO UNIFORM GAP PROPERTY.

e For k < kh )\Z_H

max *

— > 6.

Discrete control on parabolic equations.



-al simulations.

Function z — ()

T T
1.5

Discrete control on parabolic equations.



-al simulations.

_(ah

Discrete derivative: k — log ( % D

T T
0 | - .
710 - -

AQ < h%’%uin

720 - -
—30 |- -

\ \ \ \ \ \

ol

50 100 150 200 250 300
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-al simulations.

Discrete norm k — log (||1(0.7,1)¢%||x)

) 4
ALK < ¥ Ymin

—40 |- N

| | | |
0 50 100 150 200 250 300

and M. M Discrete control on parabolic equations.



-al simulations.

Shape of the (N — 1)t" eigenfunction
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-al simulations.

Function z — ~(x)
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-al simulations.

Gap k— AP Ab

k+1 7~ 'k
105 F ‘ ‘ ‘ )
1ot - AP < 5 Ymin .
1073 )
1077 |- |
10~ |- ‘ ‘ ! L]

|
0 50 100 150 200

Discrete control on parabolic equations.
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@ Application in control theory
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EXPRESSIONS OF THE CONTROLS

h
N — (40 ,—>\‘ch}7
(‘g ' QJ h AP

(f) - Z IzH O] J (f)’

1.6}
ho —ArT h)
, €
Yy T PO
: 0—of  \ Y
I=LyNt1)2 < — )

RECALL THE STRATEGY

h
o Find lower bounds on w or |10 : OK

e Find p and AV such that : VA > 0, A" € L(p,N) : KO.

TO SUM UP

o For all k, b e, [(61);12 > Cre”C2V M,

jhew

h — o 3R
o For all k, ‘%‘ > Cie Czy/ Ay

o If k < kI

max?

then AP, | — AR > 4.

k+1

Discrete control on parabolic equations.



Partial controlability result.

Theorem [A.-Boyer-Morancey, 2016]

We say that relaxed control up to rank k. holds for system (P") if :
VT > 0, there exists a control V' (or Vi) satisfying

Vh >0, [VEII < Clly™°ll (or W]l < Clly™°I)

and such that the corresponding solution verifies :

h R0y~ 5 Mo
Vh >0, [[y"(T)|| < Clly™"|le Fmax .

Let & > 0 and let kffo be such that AP, < 5 Ymin(l —€).

max

Relaxed controllability up to rank k. holds for system (P").

Remarks

|
A

o The solution satisfies in fact : Yh > 0, ||[y*(T)|| < ||y"°||Cre™ »2.

o Simpler proof of known results with a wider range of applications.

control on parabolic equations.



Jontrollability of a para

System of two parabolic equations in one space dimension, Q = (0, L).
Only one control force on the first equation (distributed or boundary).

, h hy Vit
YO+ (A )@= () + el (en0) on (0.7),
h
(s™) §"(0) = y"° € RN

() =0, on (0,7),

Note that the second equation is controlled by the solution to the first one.

Discrete control on parabolic equations.



Controllability of a par:

System of two parabolic equations in one space dimension, Q = (0, L).
Only one control force on the first equation (distributed or boundary).

, h hy vl
W™ + <Al AO;L) Yy () = (V‘lol“”) +IN+1/2 bhit) (ex0), on (0,7),
h
(s™) §"(0) = y"° € RN

() =0, on (0,7),

Theorem [A.-Boyer-Morancey, 2016]

Let € > 0 and let k%, be such that /\Zha < 5 Ymin(l — &)
Relax controllability up to rank k%, holds for system (S").

max

Remarks

| \

The Carleman technics employed by [2010, Boyer, Hubert and Le Rousseau/
cannot be used here.

Discrete control on parabolic equations.



Jontrollability of a para

System of two parabolic equations in one space dimension, Q = (0, L).
Only one control force on the first equation (distributed or boundary).

, h rhq Vit
W™ + (“41 X;L) Yy () = (Vt‘()l”) +YNt1/2 bhf) (en0), on (0,T),
h
(s™) §"(0) = y"° € RN

() =0, on (0,7),

Main difference with the scalar case :

h
e Operator ("? .A(l)h) is not diagonalizable = we use the Jordan form.

. . . . h h
o Existence + estimates of a biorthogonal family for (e‘*k‘) U (te_’\k") .
k>1 k>1

O

ete control on parabolic equations.



Conclusion.

SUM UP

We have built an elementary approach :
@ to solve the control problem for a large class of parabolic equations,

e which applies on quasi-uniform meshes,

° ‘which applies on a parabolic cascade system, ‘

(with fewer controls than equations)

o only valid in 1D.

PERSPECTIVE

Cascade systems with variable coefficients.

Discrete control on parabolic equations.



Thank you for your attention!
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Bonus slide 1 : Numerical results

Basic approach : One could have tried to use numerical analysis AZ ISV

)\Z ~ A\, = Gap property only for a portion of the spectrum.

104

I
7)\]6

—_©Yh
8| Ak .

and M. M i control on parabolic equations.



Bonus slide 1 : Numerical results

Basic approach : One could have tried to use numerical analysis AZ ISV

)\Z ~ A\, = Gap property only for a portion of the spectrum.

104
I
J— )\k
—_»h
8| Ak .
An — My /s CON?
6 i
41 i
28 A=Al |
0 | | | | |
0 20 40 60 80 100

and M. M i control on parabolic equations.



Bonus slide 2 : Extension of |Fattorini-Russel, 1974|

Definition : set of sequences L(p, N)

Let p>0and N : Rt — N.
Denote by L(p, ) the set of sequences ¥ = (o )g>1 such that :

o Vk>1, 0pt1 — 0k 2 p,
= 1
e Ve > 0, E — <e.
oL
k=N (g)

Theorem [Fattorini-Russel, 1974]

Let p>0and N : Rt — N.

Ve >0, 3K > 0, | VS € L(p, N) |, 3@ k>1, VE > 1, g7 || 2 < K- exp(eoy).

where (q7) is a biorthogonal family for .

[Ammar Khodja - Benabdallah - Gonzalez Burgos - de Teresa, 201 1]
Let m € N, we have the same results for the family (t7e=%%),,>;>0,k>1-

Discrete control on parabolic equations.



Bonus slide 3 : Proof of the lemma

Lemma

Assume that one can prove that there exists Cy such that V1 <4, < N :

(Pp); — (p)j—1

hy. _ (Hh).
| Bk Olistl o gy, |+
hy/AR

h
hy/ Al

then the following relations holds :

0— (oM N

> Cy and || 1wol|| > Cj.
B/l

PROOF (SKETCH)

(6p)i = (P1)i-1 > Gy |(¢Z)j‘+ (91)i — (d1)j—1
hy/AR - hy/AR

hy hy . N
@i = ()i 20k|(¢2)j‘ now : by -
j=1

hy/ AR
()i — (¢p)i-1 0— (¢p)n
Sk kR T > Cp. Takei = N 4+1: |——F22 | > ¢y

Ve n/Ne |

and M. Morancey. Discrete control on parabolic equations.



Bonus slide 3 : Proof of the lemma

Assume that one can prove that there exists Cy such that V1 <4, < N :

(1)i — ($R)i-1
hy/AR

()5 — (#)j—1

‘(d’}ﬁ)i 4+
hy/AR

> Cy ’ ¢k)]‘+

0— (o} N

hyAR

PROOF (SKETCH) Now : [[1,¢!| > C} ?

then the following relations holds : > C) and |[|1, a | > Ck.

CONTINOUS CASE : STEP 1

Find a nodal domain (a,b) in w : ¢x(a) = ¢x(b) =0

b b
/ 00 (10081 (2) ok (w)dz = A / (¢n(2))2dz

b

b
Integrate by parts / (y(2) B i (x))2dx = )\k/ (¢n(z))2dz

a

and M. Morancey. Discrete control on parabolic equations.



Bonus slide 3 : Proof of the lemma

Lemma

Assume that one can prove that there exists Cy such that V1 <4, < N :

n (9p)i — (¢1)i—1
hyf AR

@R)i = G)i-1

(6h)i
et Wiy

> Cy ’(¢Z)j‘ +

(P
then the following relations holds : O}l«#})f’

> Cy, and [[1,¢7 ]| > Cy.

PROOF (SKETCH) Now : |[1,¢0[| > Cy 7
CONTINOUS CASE : STEP 2

b
Integrate by parts /

a

b
(7(2)Ba b1 (2))2dz = Ay / (¢n(2))2dz
1
v

b
/ (68 ()2 + (7(2)Da i (2))2dz > A Ca

Use the expression ¢ (z) + Oz ¢k (x) > C1

and M. Morancey. Discrete control on parabolic equations.




Bonus slide 3 : Proof of the lemma

Lemma

Assume that one can prove that there exists Cy such that V1 <4, < N :

i ()i — (B})ia
hy/AR

(Pp); — (p)j—1

(#):
‘ * hy/AR

> Cy ’(¢2)j‘ +

h
then the following relations holds : w

> Cy and || 1wol|| > Cj.

PROOF (SKETCH) Now : |[1w¢}|| > Cj ?

CONTINOUS CASE : STEP 2

b b
Integrate by parts / (v(x)Bx i ())2dx = )\k/ (¢ (z))?dz

Use the expression ¢ (x) + \/%quﬁk(:r) >Ch
k

b
/ e (k)% + | (1(@)0 b1 (2))? iz > Mo

and M. Morancey. Discrete control on parabolic equations.



Bonus slide 3 : Proof of the lemma

Lemma

Assume that one can prove that there exists Cy such that V1 <4, < N :

n (9p)i — (¢1)i—1
hyf AR

(@) — (1)1

(6h)i
ot By /A

> Cy ’(¢Z)j‘ +

(ol
then the following relations holds : O}l«#})f’

> Oy and || 187 > Ck.

PROOF (SKETCH) Now : |[1,¢0[| > Cy 7

CONTINOUS CASE : STEP 2

b
Integrate by parts /

a

b
(7(2)Ba b1 (2))2dz = Ay / (¢n(2))2dz
1
v

Use the expression ¢ (z) + Oz ¢k (x) > C1

b
/ 2k (p1())2dz > Mo

and M. Morancey. Discrete control on parabolic equations.




Bonus slide 3 : Proof of the lemma

Lemma

Assume that one can prove that there exists Cy such that V1 <4, < N :

n (9p)i — (¢1)i—1
hyf AR

(@) — (1)1

(6h)i
ot By /A

> Cy ’(¢Z)j‘ +

(ol
then the following relations holds : O}l«#})f’

> Oy and || 187 > Ck.

PROOF (SKETCH) Now : |[1,¢0[| > Cy 7

CONTINOUS CASE : STEP 2

b b
Integrate by parts / (y(2)0z dp, () ?dz = )\k/ (¢ (x))?da
1
Use th i ——0z >C
se the expression ¢ (z) + Novs or(z) > C1

. b ‘
[ @@as> [“Gu@)as > oy

and M. Morancey. Discrete control on parabolic equations.




	The moment method on a semi-discretized parabolic equation.
	Discrete spectral properties.
	Application in control theory

